OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 8 — Apr. 16, 2007
  • pp: 4597–4616

Optical frequency domain reflectometry based on real-time Fourier transformation

Yongwoo Park, Tae-Jung Ahn, Jean-Claude Kieffer, and José Azaña  »View Author Affiliations

Optics Express, Vol. 15, Issue 8, pp. 4597-4616 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (627 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate an ultrahigh-speed optical frequency domain reflectometry (OFDR) system based on optical frequency-to-time conversion by pulse time stretching with a linearly chirped fiber Bragg grating (LCFG). This method will be referred to as OFDR based on real-time Fourier transformation (OFDR-RTFT). In this approach the frequency domain interference pattern, from which the desired axial depth profile is reconstructed, can be captured directly in the time-domain over the duration of a single stretched pulse, which translates into unprecedented axial line acquisition rates (as high as the input pulse repetition rate). We provide here a comprehensive, rigorous mathematical analysis of this new OFDR approach. In particular, we derive the main design equations of an OFDR-RTFT system in terms of its key performance parameters. Our analysis reveals the detrimental influence of nonlinear phase variations in the input optical pulse (including higher-order dispersion terms and group delay ripples introduced by the LCFG stretcher) on the system performance, e.g. achievable resolution. A simple and powerful method based on Hilbert transformation is successfully demonstrated to compensate for these detrimental phase distortions. We show that besides its potential to provide ultrahigh acquisition speeds (in the MHz range), LCFG-based OFDR-RTFT also offers the potential for performance advantages in terms of axial resolution, depth range and sensitivity. All these features make this approach particularly attractive for imaging applications based on optical coherence tomography (OCT). In our experiments, single-reflection depth profiles with nearly transform-limited ≈ 92.8 μm (average) axial resolutions over a remarkable 18 mm depth range have been obtained from OFDR-RTFT interferograms, each one measured over a time window of ≈50 ns at 20 MHz repetition rate. Improved sensitivities up to -61 dB have been achieved without using any balanced detection scheme.

© 2007 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(110.2350) Imaging systems : Fiber optics imaging
(110.4500) Imaging systems : Optical coherence tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Imaging Systems

Original Manuscript: January 29, 2007
Revised Manuscript: March 26, 2007
Manuscript Accepted: March 29, 2007
Published: April 3, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Yongwoo Park, Tae-Jung Ahn, Jean-Claude Kieffer, and José Azaña, "Optical frequency domain reflectometry based on real-time Fourier transformation," Opt. Express 15, 4597-4616 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Uttam and B. Culshaw, "Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique," IEEE J. Lightwave Technol. 3,971-977 (1985) [CrossRef]
  2. U. Glombitza and E. Brinkmeyer, "Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides," J. Lightwave Technol. 11,1377-1384 (1993) [CrossRef]
  3. R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, "Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources," J. Lightwave Technol. 12,1622-1630 (1994) [CrossRef]
  4. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117,43-48 (1995) [CrossRef]
  5. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11,889-894 (2003) [CrossRef] [PubMed]
  6. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28,2067-2069 (2003) [CrossRef] [PubMed]
  7. M. A. Choma, M. V. Sarunic, C. Y. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11,2183-2189 (2003) [CrossRef] [PubMed]
  8. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftima and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11,2953-2963 (2003) [CrossRef] [PubMed]
  9. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser," Opt. Lett. 22,1704-1706 (1997) [CrossRef]
  10. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artefacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12,2977-2998 (2004) [CrossRef] [PubMed]
  11. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and application for optical coherence tomography," Opt. Express 14,3225-3237 (2006) [CrossRef] [PubMed]
  12. R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31,2975-2977 (2006) [CrossRef] [PubMed]
  13. M. Wojtkowski, V. J. Srinivasan, T. J. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12,2404-2422 (2004) [CrossRef] [PubMed]
  14. S. Moon, D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Opt. Express 14,11575-11584 (2006) [CrossRef] [PubMed]
  15. Y. Park, T. -J. Ahn, J.-C. Kieffer, and J. Azaña, "Real-Time Optical Frequency-Domain Reflectometry," to be presented in Conf. Lasers and Electro-Optics (CLEO/IQEC), CTuT1 (2007)
  16. M. A. Muriel, J. Azaña, and A. Carballar, "Real-time Fourier transformer based on fiber gratings, " Opt. Lett. 24,1-3 (1999) [CrossRef]
  17. J. Azaña and M. A. Muriel, "Real-time Optical Spectrum Analysis Based on the Time-Space Duality in Chirped Fiber Gratings," IEEE J. Quantum Electron. 36,517-526 (2000) [CrossRef]
  18. Y. C. Tong; L.Y. Chan; H.K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett,  33,983-985 (1997) [CrossRef]
  19. T. -J. Ahn, J. Y. Lee, and D. Y. Kim, "Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation," Appl. Opt. 44,7630-7634 (2005) [CrossRef] [PubMed]
  20. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. -P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13,10652-10664 (2005) [CrossRef] [PubMed]
  21. http://www.proximion.com/products/dcm/index.php
  22. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78,1135-1184 (2006) [CrossRef]
  23. K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, and J. Albert, "Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion," Opt. Lett. 19,1324-1326 (1994) [CrossRef]
  24. R. Kashyap, Fiber Bragg Grating (Academic Press, 1999)
  25. K. Takada, "Noise in optical low-coherence reflectometry," IEEE J. Quantum Electron. 34,1098-1108 (1998) [CrossRef]
  26. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, "High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source," Opt. Lett. 20,1486 (1995) [CrossRef] [PubMed]
  27. J. W. Goodman, Statistical Optics (New York, John Wiley and Sons, 164-169, 1985)
  28. J. M. Schmitt, "Optical Coherence Tomography (OCT):A Review," IEEE J. Select. Topics Quantum Electron. 5,1205-1215 (1999) [CrossRef]
  29. G. Agrawal, Nonlinear Fiber Optics (Academic Press, 64-67, 1995)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited