OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 8 — Apr. 16, 2007
  • pp: 4694–4704

Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics

Mohammad Soltani, Siva Yegnanarayanan, and Ali Adibi  »View Author Affiliations

Optics Express, Vol. 15, Issue 8, pp. 4694-4704 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (788 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the fabrication and experimental characterization of an ultra-high Q microdisk resonator in a silicon-on-insulator (SOI) platform. We examine the role of the substrate in the performance of such microdisk resonators. While substrate leakage loss has warranted the necessity of substrate undercut structures in the past, we show here that the substrate has a very useful role to play for both passive chip-scale device integration as well as active electronic device integration. Two device architectures for the disk-on-substrate are studied in order to assess the possibility of such an integration of high Q resonators and active components. Using an optimized process for fabrication of such a resonator device, we experimentally demonstrate a Q~3×106, corresponding to a propagation loss ~0.16 dB/cm. This, to our knowledge, is the maximum Q observed for silicon microdisk cavities of this size for disk-on-substrate structures. Critical coupling for a resonance mode with an unloaded Q~0.7×106 is observed. We also report a detailed comparison of the obtained experimental resonance spectrum with the theoretical and simulation analysis. The issue of waveguide-cavity coupling is investigated in detail and the conditions necessary for the existence or lack of critical coupling is elaborated.

© 2007 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

Original Manuscript: January 17, 2007
Revised Manuscript: March 27, 2007
Manuscript Accepted: March 29, 2007
Published: April 3, 2007

Mohammad Soltani, Siva Yegnanarayanan, and Ali Adibi, "Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics," Opt. Express 15, 4694-4704 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Soref and J. P. Lorenzo, "All-Silicon Active and Passive Guided-Wave Components for λ=1.3 and 1.6μm," IEEE J. Quantum Electron. 22,873-879 (1986). [CrossRef]
  2. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction, John Wiley, West Sussex, 2004. [CrossRef]
  3. L. Pavesi and D. J. Lockwood, Silicon Photonics, Springer-verlag, New York, 2004.
  4. M. Lipson, "Guiding, Modulating and Emitting Light on Silicon- Challenges and Opportunities," J. Lightwave Technol.,  23, 4222(2005). [CrossRef]
  5. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30,2891-2893 (2005). [CrossRef] [PubMed]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  7. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004). [CrossRef] [PubMed]
  8. L. Zhou and A. W. Poon, "Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators," Opt. Express 14, 6851-6857 (2006). [CrossRef] [PubMed]
  9. S. J. Emelett and R. A. Soref, "Design and simulation of silicon microring optical routing switches," J. Lightwave Technol.,  23,1800-1807 (2005). [CrossRef]
  10. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004). [CrossRef] [PubMed]
  11. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005). [CrossRef] [PubMed]
  12. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13,1515-1530 (2005). [CrossRef] [PubMed]
  13. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693-3695 (2004). [CrossRef]
  14. T. J. Johnson, M. Borselli, and O. Painter, "Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator," Opt. Express,  14, 817-831(2006). [CrossRef] [PubMed]
  15. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett.,  29, 2861(2004). [CrossRef]
  16. P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi "Integration of fiber coupled high-Q SiNx microdisks with atom chips", Appl. Phys. Lett.,  89,131108(2006). [CrossRef]
  17. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett.,  36, 321(2000). [CrossRef]
  18. M. Cai, O. Painter and K. J. Vahala, "Observation of critical coupling in a fiber taper to silica-microsphere whispering gallery mode system," Phys. Rev. Lett.,  85, 74(2000). [CrossRef] [PubMed]
  19. D. Weiss, V. Sandoghdar, J. Hare, V. Lef’evre-Seguin, J. Raimond, and S. Haroche, "Splitting of high-Q Mie modes induced by light backscattering in silica microspheres," Opt. Lett. 22, 1835 (1995). [CrossRef]
  20. B. E. Little, J.-P. Laine, and S. T. Chu, "Surface-Roughness-Induced Contradirectional Coupling in Ring and Disk Resonators," Opt. Lett. 22, 4-6 (1997). [CrossRef] [PubMed]
  21. M. L. Gorodetsky, A. Pryamikov, and V. Ilchenko, "Rayleigh scattering in high-Q microspheres," J. Opt. Soc. Am. B 17, 1051-1057 (2000). [CrossRef]
  22. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Modal coupling in traveling-wave resonators," Opt. Lett. 27, 1669-1671 (2002). [CrossRef]
  23. R. J. Hoekstra, M. J. Kushner, V. Sukharev, and P. Schoenborn, "Microtrenching resulting from specular reflection during chlorine etching of silicon," J. Vac. Sci. Technol. B,  16, 2102 (1998). [CrossRef]
  24. H. Haus, Waves and Fields in Optoelectronics, Prentice-Hall, Englewood Cliffs, New Jersey, 1984.
  25. F. Xia, L. Sekaric, and Y. A. Vlasov, "Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators," Opt. Express,  14, 3872-3886 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited