OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 8 — Apr. 16, 2007
  • pp: 4735–4744

Design of generalized invisible scatterers

Raymond C. Rumpf, Michael A. Fiddy, and Markus E. Testorf  »View Author Affiliations

Optics Express, Vol. 15, Issue 8, pp. 4735-4744 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (658 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A nonlinear signal processing method is applied to the design of strongly scattering objects to realize a defined angular response. Investigated as the complement of inverse scattering problems, k-space design methods are combined with cepstral filtering to obtain a permittivity distribution that scatters with the desired response. Starting with the rigorously computed angular spectrum of the scattering amplitude of an object of simple geometric shape, the corresponding k-space is modified to provide the desired scattering behavior. In order to account for strong scattering, cepstral filtering is applied to map the associated distribution of secondary sources to a unique permittivity distribution. The inversion process results in a structure that exhibits the desired properties and which can be interpreted as a perturbation of the initial structure. Simulation results are presented which illustrate the usefulness of this method. In particular, objects are modified to enhance forward scattering and suppress scattering in all other direction. Results are verified using a rigorous finite-difference frequency-domain scheme to simulate scattering. The method is demonstrated as a novel means for designing invisible objects that act as electromagnetic cloaks.

© 2007 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(100.3190) Image processing : Inverse problems

ToC Category:

Original Manuscript: February 7, 2007
Revised Manuscript: March 11, 2007
Manuscript Accepted: March 13, 2007
Published: April 4, 2007

Raymond C. Rumpf, Michael A. Fiddy, and Markus E. Testorf, "Design of generalized invisible scatterers," Opt. Express 15, 4735-4744 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. N. Mait, "Understanding diffractive optic design in the scalar domain," J. Opt. Soc. Am. A 12, 2145 - 2158 (1995). [CrossRef]
  2. S. K. Case and W. J. Dallas, "Volume holograms constructed from computer-generated masks," Appl. Opt. 17, 2537 - 2540 (1978). [PubMed]
  3. D. Peri and A. A. Friesem, "Image restoration using volume diffraction gratings," Opt. Lett. 17, 124 - 126 (1978). [CrossRef]
  4. D. M. Chambers and G. P. Nordin, "Stratified volume diffractive optical elements as high efficiency gratings," J. Opt. Soc. Am. A 16, 1184 - 1193 (1999). [CrossRef]
  5. M. Testorf and U. Gibson, "Design of thin-film-coated diffractive optical elements with frequency variant transmission functions," Proc. SPIE 5515, 158 - 169 (2004). [CrossRef]
  6. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679 - 1682 (1998). [CrossRef] [PubMed]
  7. A. Alù and N. Engheta, "Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes," J. Opt. Soc. Am. B 23, 571 - 583 (2006). [CrossRef]
  8. R. C. Rumpf and E. G. Johnson, "Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography," J. Opt. Soc. Am. A 21, 1703 - 1713 (2004). [CrossRef]
  9. R. Rumpf and E. G. Johnson, "Comprehensive modeling of near-field nano-patterning," Opt. Express 13, 7198 - 7208 (2005). [CrossRef] [PubMed]
  10. A. Mehta, R. C. Rumpf, Z. Roth, and E. G. Johnson, "Nanofabrication of a space-variant optical transmission filter," Opt. Lett. 31, 2903 - 2905 (2006). [CrossRef] [PubMed]
  11. L. Fatone, M. C. Recchioni, and F. Zirilli, "A method to solve an acoustic inverse scattering problem involving smart obstacles," Waves Random Complex Media 16, 433-455 (2006). [CrossRef]
  12. U.  Leonhardt, "Optical Conformal Mapping," Science 312, 1777 - 1780 (2006). [CrossRef] [PubMed]
  13. U.  Leonhardt, "Notes on Conformal Invisibility Devices," New. J. Phys.  8, 118 (2006). [CrossRef]
  14. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science Express 314, 977-980 (2006).
  15. D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794 (2006). [CrossRef] [PubMed]
  16. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006). [CrossRef]
  17. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780 (2006). [CrossRef] [PubMed]
  18. E.  Wolf and T.  Habashy, "Invisible bodies and uniqueness of the inverse scattering problem," J. Mod. Opt. 40, 785 - 792 (1993). [CrossRef]
  19. G. Gbur, "Nonradiating sources and other ‘invisible’ objects," E. Wolf, ed., in Progress in Optics (Elsevier, Amsterdam, 2003), Vol. 45, pp. 273 - 315.
  20. M. A. Fiddy, "Inversion of Optical Scattered Field Data." J. Phys. D 19, 301-317 (1986). [CrossRef]
  21. U. Shahid, M. Testorf and M. A. Fiddy, "Minimum-phase-based inverse scattering algorithm applied to Institute Fresnel data," Inverse Probl. 21, S153 - 164 (2005). [CrossRef]
  22. M. A. Fiddy and M. Testorf, "Inverse scattering method applied to the synthesis of strongly scattering structures," Opt. Express 14, 2037 - 2046, (2006). [CrossRef] [PubMed]
  23. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. 14, pp. 302-307, 1966. [CrossRef]
  24. A. Taflove and S. C. Hagness, Computational Electrodynamics the Finite-Difference Time-Domain Method, 3rd ed, (Artech House, 2005). [PubMed]
  25. R. C. Rumpf, "Design and optimization of nano-optical elements by coupling fabrication to optical behavior," PhD dissertation, University of Central Florida, pp. 60-81, 2006.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2403 KB)     
» Media 2: AVI (2219 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited