OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 8 — Apr. 16, 2007
  • pp: 4745–4752

An optical fiber-taper probe for wafer-scale microphotonic device characterization

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter  »View Author Affiliations

Optics Express, Vol. 15, Issue 8, pp. 4745-4752 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (3059 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A small depression is created in a straight optical fiber taper to form a local probe suitable for studying closely spaced, planar microphotonic devices. The tension of the “dimpled” taper controls the probe-sample interaction length and the level of noise present during coupling measurements. Practical demonstrations with high-Q silicon microcavities include testing a dense array of undercut microdisks (maximum Q = 3.3×106) and a planar microring (Q = 4.8×106).

© 2007 Optical Society of America

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 9, 2007
Revised Manuscript: March 15, 2007
Manuscript Accepted: March 19, 2007
Published: April 4, 2007

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 15, 4745-4752 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. C. Montgomery, Introduction to Statistical Quality Control (John Wiley & Sons, Ltd., New York, 1991).
  2. L. Pavesi and D. J. Lockwood, eds., Silicon Photonics, vol. 94 of Topics in Applied Physics (Springer-Verlag, Berlin, 2004).
  3. V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-15-1302. [CrossRef] [PubMed]
  4. I. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. Tsang, and M. Asghari, "Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators," in IEEE OFC 2003, vol. 1, pp. 249-251 (IEEE, 2003).
  5. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, and D. Prather, "Fabrication and characterization of three-dimensional silicon tapers," Opt. Express 11, 3555-3561 (2003). [CrossRef] [PubMed]
  6. M. L. Gorodetsky and V. S. Ilchenko, "High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers," Opt. Commun. 113, 133-143 (1994). [CrossRef]
  7. H. Ishikawa, H. Tamaru, and K. Miyano, "Microsphere resonators strongly coupled to a plane dielectric substrate: coupling via the optical near field," J. Opt. Soc. Am. A 17, 802-813 (2000). URL http://www.opticsinfobase.org/abstract.cfm?URI=josaa-17-4-802. [CrossRef]
  8. J. Leuthold, J. Eckner, E. Gamper, P. A. Besse, and H. Melchior, "Multimode interference couplers for the conversion and combining of zero- and first-order modes," J. Lightwave Technol. 16, 1228-1239 (1998). [CrossRef]
  9. M. M. Spühler, B. J. Offrein, G.-L. Bona, R. Germann, I. Massarek, and D. Erni, "A very short planar silica spotsize converter using a nonperiodic segmented waveguide," J. Lightwave Technol. 16, 1680-1685 (1998). [CrossRef]
  10. V. S. Ilchenko, X. S. Yao, and L. Maleki, "Pigtailing the high-Q cavity: a simple fiber coupler for optical whispering-gallery modes," Opt. Lett. 24, 723-725 (1999). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-24-11-723. [CrossRef]
  11. N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, and V. Lefèvre, "Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres," Opt. Lett. 20, 813-815 (1995). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-20-8-813. [CrossRef] [PubMed]
  12. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, "Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper," Opt. Lett. 22, 1129-1131 (1997). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-15-1129. [CrossRef] [PubMed]
  13. M. Cai, G. Hunziker, and K. Vahala, "Fiber-optic add-drop device based on a silica microsphere-whispering gallery mode system," IEEE Photon. Technol. Lett. 11, 686-687 (1999). [CrossRef]
  14. M. Cai and K. Vahala, "Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration," Opt. Lett. 25, 260-262 (2000). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-4-260. [CrossRef]
  15. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043,902 (2003). [CrossRef]
  16. P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801 (2005). [CrossRef] [PubMed]
  17. K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, "Photoluminescence measurements of quantum-dotcontaining semiconductor microdisk resonators using optical fiber taper waveguides," Phys. Rev. B 72, 205,318 (2005). [CrossRef]
  18. C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. C. Magi, D. J. Moss, and B. J. Eggleton, "Efficient coupling to chalcognide glass photonic crystal waveguides via silica optical fiber nanowires," Opt. Express 14, 1070-1078 (2006). [CrossRef] [PubMed]
  19. P. E. Barclay, K. Srinivasan, and O. Painter, "Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities," J. Opt. Soc. Am. B 20, 2274-2284 (2003). URL http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-11-2274. [CrossRef]
  20. P. J. Paddon,M. K. Jackson, J. F. Young, and S. Lam, "Photonic input/output port," U.S. Patent 7031562, Apr. 18, 2006.
  21. T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, "Highly efficient unibond silicon-on-insulator blazed grating couplers," Appl. Phys. Lett. 77, 4214 (2000). [CrossRef]
  22. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002). [CrossRef]
  23. G. Roelkens, D. V. Thourhout, and R. Baets, "High efficiency silicon-on-insulator grating coupler based on a poly-silicon overlay," Opt. Express 14, 11622-11630 (2006). [CrossRef]
  24. I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, "Curved-microfiber photon coupling for photonic crystal light emitter," Appl. Phys. Lett. 87, 131,107 (2005). [CrossRef]
  25. I.-K. Hwang, G.-H. Kim, and Y.-H. Lee, "Optimization of coupling between photonic crystal resonator and curved microfiber," IEEE J. Quantum Electron. 42, 131-136 (2006). [CrossRef]
  26. C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frederick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, "Nanowire coupling to photonic crystal nanocavities for single photon sources," Opt. Express 15, 1267-1276 (2007). [CrossRef] [PubMed]
  27. M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y. Lee, "Photosensitive post tuning of chalcogenide photonic crystal waveguides," Opt. Express 15, 1277-1285 (2007). [CrossRef] [PubMed]
  28. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, "Efficient input and output fiber coupling to a photonic crystal waveguide," Opt. Lett. 29, 697-699 (2004). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-7-697. [CrossRef] [PubMed]
  29. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515 (2005). [CrossRef] [PubMed]
  30. M. Borselli, T. J. Johnson, and O. Painter, "Measuring the role of surface chemistry in silicon microphotonics," Appl. Phys. Lett. 88, 131,114 (2006). [CrossRef]
  31. M. Borselli, T. J. Johnson, C. P. Michael, M. D. Henry, and O. Painter, "Surface encapsulation for low-loss silicon photonics," (unpublished).
  32. For doublet modes, the quality factor used in Fig. 4(c) is the average Q between the two standing-wave modes.
  33. For silicon wafers with 14-20Ω·cm resistivity, free-carrier absorption [34] limits microcavities to Q < 9×107-1.4×108 at λo = 1532 nm.
  34. R. A. Soref and B. R. Bennett, "Electro optical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987). [CrossRef]
  35. M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberton, S. List, I. Young, and K. Cadien, "On-chip optical interconnects," Intel Technol. J. 8, 129-141 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited