OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 15, Iss. 9 — Apr. 30, 2007
  • pp: 5537–5542

Porous silicon Bragg reflectors with sub-micrometer lateral dimensions

Mark B. H. Breese and Dharmalingam Mangaiyarkarasi  »View Author Affiliations

Optics Express, Vol. 15, Issue 9, pp. 5537-5542 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1127 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bragg reflectors with widths down to 300 nm have been fabricated in porous silicon. This was achieved by irradiation of highly-doped p-type silicon with a focused beam of high-energy ions in a channeled alignment, in which the beam is aligned with a major crystallographic direction. The reflected colour is controllably tuned across the visible spectrum by varying the ion irradiated dose. The depth distribution of ion induced defects differs in channeled alignment compared to random beam alignment, resulting in the hole current during subsequent anodisation being more confined to narrower lateral regions, enabling different reflective wavelengths to be patterned on a sub-micron lateral scale. This work provides a means of producing high-density arrays of micron-size reflective colour pixels for uses in high-definition displays, and selectively tuning the wavelengths of porous silicon Fabry-Perot microcavities across the visible and infra-red ranges for optical communications and computing applications.

© 2007 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(230.1480) Optical devices : Bragg reflectors
(230.4170) Optical devices : Multilayers

ToC Category:
Integrated Optics

Original Manuscript: March 20, 2007
Revised Manuscript: April 10, 2007
Manuscript Accepted: April 17, 2007
Published: April 20, 2007

Mark B. H. Breese and Dharmalingam Mangaiyarkarasi, "Porous silicon Bragg reflectors with sub-micrometer lateral dimensions," Opt. Express 15, 5537-5542 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Vincent, "Optical properties of porous silicon superlattices," Appl. Phys. Lett. 64, 2367-2369 (1994). [CrossRef]
  2. M. G. Berger, R. Arens-Fischer, M. Kruger, S. Billat, H. Luth, S. Hillbrich, W. Theiß, and P. Grosse, "Dielectric filters made of PS: advanced performance by oxidation and new layer structures," Thin Solid Films 297, 237-240 (1997). [CrossRef]
  3. M. Araki, H. Koyama, and N. Koshida, "Controlled electroluminescence spectra of porous silicon diodes with a vertical optical cavity," Appl. Phys. Lett. 69, 2956-2958 (1996). [CrossRef]
  4. L. Pavesi, "Porous silicon dielectric multilayers and microcavities," Riv. Nuovo Cimento 20, 1-78 (1997). [CrossRef]
  5. S. Nagata, C. Domoto, T. Nishimura, and K. Iwameji, "Single-mode optical waveguide fabricated by oxidization of selectively doped titanium porous silicon," Appl. Phys. Lett. 72, 2945-2947 (1998). [CrossRef]
  6. A. Birner, R. B. Wehrspohn, U. Gösele, and K. Busch, "Silicon-Based Photonic Crystals," Adv. Mater. 13, 377-388 (2001). [CrossRef]
  7. N. Savage, "Linking with light," IEEE Spectrum 39, 32-36 (2002). [CrossRef]
  8. V. Lehmann, Electrochemistry of Silicon (Wiley-VCH, Weinheim, Germany 2002). [CrossRef]
  9. D. Mangaiyarkarasi, M. B. H. Breese, Y. S. Ow, and C. Vijila, "Controlled blue-shift of the resonant wavelength in porous silicon microcavities using ion irradiation," Appl. Phys. Lett. 89, 021910-(1-3) (2006). [CrossRef]
  10. M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. Blackwood, "Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization," Phys. Rev. B 73, 035428 (2006). [CrossRef]
  11. D. S. Gemmell, "Channeling and related effects in the motion of charged particles through crystals" Rev. Mod. Phys. 46, 129-227 (1974). [CrossRef]
  12. L. C. Feldman, J. W. Mayer, S. T. Picraux, Materials Analysis by Ion Channeling (Acad. Press, New York, 1982).
  13. P. J. C. King, M. B. H. Breese, P. J. C. Smulders, P. R. Wilshaw and G. W. Grime, "The observation of a blocking to channeling transition for MeV protons at stacking faults in silicon. Phys. Rev. Lett. 74, 411-414 (1995). [CrossRef] [PubMed]
  14. M. B. H. Breese, P. J. C. King, P. J. C. Smulders, and G. W. Grime, "Dechanneling of MeV protons by 60º dislocations" Phys. Rev. B 51, 2742-2750 (1995). [CrossRef]
  15. M. B. H. Breese, D. N. Jamieson and P. J. C. King, Materials Analysis using a Nuclear Microprobe, (Wiley, New York, 1996).
  16. M. B. H. Breese, E. J. Teo, M. A. Rana, L. Huang, J. A. van Kan, F. Watt, and P. J. C. King, "Observation of many coherent oscillations for MeV protons transmitted through stacking faults," Phys. Rev. Lett. 92, 045503 (2004). [CrossRef] [PubMed]
  17. Ocean Optics http://www.oceanoptics.com/products/colorfilters.aspa>

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited