OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 15, Iss. 9 — Apr. 30, 2007
  • pp: 5559–5571

Analysis of a quantum nondemolition measurement scheme based on Kerr nonlinearity in photonic crystal waveguides

Ilya Fushman and Jelena Vučković  »View Author Affiliations

Optics Express, Vol. 15, Issue 9, pp. 5559-5571 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (250 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss the feasibility of a quantum nondemolition measurement (QND) of photon number based on cross phase modulation due to the Kerr effect in photonic crystal waveguides (PCW’s). In particular, we derive the equations for two modes propagating in PCW’s and their coupling by a third order nonlinearity. The reduced group velocity and small cross-sectional area of the PCW lead to an enhancement of the interaction relative to bulk materials. We show that in principle, such experiments may be feasible with current photonic technologies, although they are limited by material properties. Our analysis of the propagation equations is sufficiently general to be applicable to the study of soliton formation, all-optical switching and can be extended to processes involving other orders of the nonlinearity.

© 2007 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.7370) Optical devices : Waveguides
(270.0270) Quantum optics : Quantum optics
(270.5570) Quantum optics : Quantum detectors

ToC Category:
Quantum Optics

Original Manuscript: March 12, 2007
Manuscript Accepted: March 23, 2007
Published: April 23, 2007

Ilya Fushman and Jelena Vučković, "Analysis of a quantum nondemolition measurement scheme based on Kerr nonlinearity in photonic crystal waveguides," Opt. Express 15, 5559-5571 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Imoto, H. Haus, and Y. Yamamoto, "Quantum nondemolition measurement of the photon number via the optical Kerr effect," Phys. Rev. A 32, 2287 (1985). [CrossRef] [PubMed]
  2. M.D. Levenson, R.M. Shelby, M. Reid, and D.F. Walls, "Quantum nondemolition Detection of Optical Quadrature Amplitudes," Phys. Rev. Lett. 57, 2473 (1986). [CrossRef] [PubMed]
  3. S.R. Friberg, S. Machida, and Y. Yamamoto, "Quantum-nondemolition measurement of the photon number of an optical soliton," Phys. Rev. Lett. 69, 3165 (1992). [CrossRef] [PubMed]
  4. S.R. Friberg, T. Mukai, and S. Machida, "Dual Quantum Nondemolition Measurements via Successive Soliton Collisions," Phys. Rev. Lett. 84, 59 (2000). [CrossRef] [PubMed]
  5. F. Konig, B. Buchler, T. Rechtenwald, G. Leuchs, and A. Sitzmann, "Soliton backaction-evading measurement using spectral filtering," Phys. Rev. A 66, 043810 (2002). [CrossRef]
  6. J.M. Courty, S. Spa, F. Konig, A. Sizmann, and G. Leuchs, "Noise-free quantum-nondemolition measurement using optical solitons," Phys. Rev. A 58, 1501 (1998). [CrossRef]
  7. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a 2D Photonic Crystal," Phys. Rev. Lett. 95, 013,904 (2005). [CrossRef]
  8. R. W. Boyd, Nonlinear Optics (Academic Press, 1991).
  9. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, "The Nonlinear Optical Properties of AlGaAs at the Half Band Gap," IEEE J. Quantum Electron. 33(3), 341 (1997). [CrossRef]
  10. S. Hoa, C. Soccolich, M. Islam, W. Hobson, A. Levi, and R. Slusher, "Large nonlinear phase shifts in low-loss AIGaAs waveguides near half-gap," Appl. Phys. Lett. 59, 2558 (1991). [CrossRef]
  11. K. Nakatsuhara, T. Mizumoto, E. Takahashi, S. Hossain, Y. Saka, B.-J. Ma, and Y. Nakano, "All-optical switching in a distributed-feedback GaInAsP waveguide," Appl. Opt. 38, 3911 (1999). [CrossRef]
  12. Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics (John Wiley and Sons Inc., 1999).
  13. H. Altug and J. Vuckovic, "Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays," Appl. Phys. Lett. 86, 111,102 (2005). [CrossRef]
  14. Y. Vlasov, M. O’Boyle, H. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 66 (2005). [CrossRef]
  15. J. D. Jackson, Classical Electrodynamics (John Wiley and Sons Inc., 1998).
  16. M. Settle, M. Salib, A. Michaeli, and T. F. Krauss, "Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography," Opt. Express 14., 2440 (2006). [CrossRef] [PubMed]
  17. A. Villeneuve, C. Yang, G. Stegeman, C. Lin, and H. Lin, "Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs," Appl. Phys. Lett. 62, 2465 (1993). [CrossRef]
  18. E. Waks and J. Vuckovic, "Dispersive properties and giant Kerr non-linearities in Dipole Induced Transparency," quant-ph/0511205 (2005).
  19. K. Nemoto and W. J. Munro, "Nearly Deterministic Linear Optical Controlled-NOT Gate," Phys. Rev. Lett. 93, 250,502 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited