OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 15, Iss. 9 — Apr. 30, 2007
  • pp: 5761–5774

Modified Gouy phase in optical resonators with mixed boundary conditions, via the Born-Oppenheimer method

Jens U. Nöckel  »View Author Affiliations

Optics Express, Vol. 15, Issue 9, pp. 5761-5774 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (396 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate near-paraxial modes of high-finesse, planoconcave microresonators without using the paraxial approximation. The goal is to develop an analytical approach which is able to incorporate not only the spatial shape of the resonator boundaries, but also the dependence of reflectivities on angle of incidence. It is shown that this can be achieved using the Born-Oppenheimer method, augmented by a local Bessel wave approximation. We discuss how this approach extends standard paraxial theory. It is found that the Gouy phase of paraxial theory, which is determined purely by ray-optics, is no longer the sole parameter governing transverse mode splittings. The additional determining factor is the sensitivity with which boundary reflection phases depend on incident angle.

© 2007 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(140.4780) Lasers and laser optics : Optical resonators
(260.2110) Physical optics : Electromagnetic optics
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Physical Optics

Original Manuscript: April 3, 2007
Revised Manuscript: April 24, 2007
Manuscript Accepted: April 25, 2007
Published: April 26, 2007

Jens U. Nöckel, "Modified Gouy phase in optical resonators with mixed boundary conditions, via the Born-Oppenheimer method," Opt. Express 15, 5761-5774 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. E. Siegman, Lasers (University Science Books, 1986).
  2. T. Klaassen, A. Hoogeboom, M. P. van Exter, and J. P. Woerdman, "Gouy phase of nonparaxial eigenmodes in a folded resonator," J. Opt. Soc. Am. A 21, 1689-1692 (2004). [CrossRef]
  3. G. W. Forbes, "Using rays better. IV. Theory for refraction and reflection," J. Opt. Soc. Am. A 18, 2557-2564 (2001). [CrossRef]
  4. D. H. Foster and J. U. Nöckel, "Bragg-induced orbital angular-momentum mixing in paraxial high-finesse cavities," Opt. Lett. 29, 2788-2790 (2004). [CrossRef] [PubMed]
  5. A. Fox and Y. Li, "Resonant modes in a maser interferometer," Bell Syst. Tech. J. 40, 453-488 (1969).
  6. H. Laabs and A. T. Friberg, "Nonparaxial eigenmodes of stable resonators," IEEE J. Quantum Electron. 35, 198-207 (1999). [CrossRef]
  7. D. H. Foster and J. U. Nöckel, "Spatial and polarization structure in micro-domes: effects of a Bragg mirror," in Resonators and Beam Control VII (A. V. Kudryashov and A. H. Paxton, eds.), Proc. SPIE 5333, 195-203 (2004). http://arxiv.org/abs/physics/0406131
  8. D. H. Foster and J. U. Nöckel, "Methods for 3-D vector microcavity problems involving a planar dielectric mirror," Opt. Commun. 234, 351-383 (2004). [CrossRef]
  9. M. Aziz, J. Pfeiffer, and P. Meissner, "Modal behaviour of passive, stable microcavities," Phys. Stat. Solidi A  188, 979-982 (2001). [CrossRef]
  10. S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, "Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale," Appl. Phys. Lett. 83, 767-769 (2003). [CrossRef]
  11. G. V. Prakash, L. Besombes, T. Kelf, J. J. Baumberg, P. N. Bartlett, and M. Abdelsalem, "Tunable resonant optical microcavities by self-assembled templating," Opt. Lett. 29, 1500-1502 (2004). [CrossRef]
  12. G. Cui, J. M. Hannigan, R. Loeckenhoff, F. M. Matinaga, M. G. Raymer, S. Bhongale, M. Holland, S. Mosor, S. Chatterjee, H. M. Gibbs, and G. Khitrova, "A hemispherical, high-solid-angle optical micro-cavity for cavity-qed studies," Opt. Express 14, 2289-2299 (2006). [CrossRef] [PubMed]
  13. A. Messiah, Quantum Mechanics (North Holland, John Wiley & Sons, 1966) Vol. 2.
  14. F. Laeri and J. U. Nöckel, "Nanoporous compound materials for optical applications - Microlasers and microresonators," in Handbook of Advanced Electronic and Photonic Materials, H. S. Nalwa, ed., 6, 103-151 (Academic Press, 2001).
  15. H. E. Tureci, H. G. L. Schwefel, and A. Douglas Stone, "Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric micro-cavities," Opt. Express 10, 752-776 (2002) [PubMed]
  16. J. U. Nöckel, G. Bourdon, E. L. Ru, R. Adams, I. Robert, J.-M. Moison, and I. Abram, "Mode structure and ray dynamics of a parabolic dome microcavity," Phys. Rev. E 62, 8677-8699 (2000). [CrossRef]
  17. S. J. M. Habraken and G. Nienhuis, "Modes of a twisted optical cavity," Phys. Rev. A 75, 033819 (2007). [CrossRef]
  18. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, (Feshbach Publishing, LLC, 1981) Vol. 2.
  19. O. Zaitsev, R. Narevich, and R. E. Prange, "Quasiclassical Born-Oppenheimer approximations," Found. Phys. 31, 7 (2001). [CrossRef]
  20. D. H. Foster, PhD thesis, http://hdl.handle.net/1794/3778 (University of Oregon, 2006).
  21. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc, 1991). [CrossRef]
  22. V. M. Shalaev,"Optical negative-index metamaterials," Nature Photonics 1, 41-48 (2007). [CrossRef]
  23. G. Nienhuis and L. Allen, "Paraxial wave optics and harmonic oscillators," Phys. Rev. A 48, 656-665 (1993). [CrossRef] [PubMed]
  24. O. Steuernagel, "Equivalence between focused paraxial beams and the quantum harmonic oscillator," Am. J. Phys. 73, 625-629 (2005). [CrossRef]
  25. F. Laeri, G. Angelow, and T. Tschudi, "Designing resonators with large mode volume and high mode discrimination," Opt. Lett. 21, 1324-1327 (1996). [CrossRef] [PubMed]
  26. M. Achtenhagen, A. Hardy, and E. Kapon, "Three-dimensional analysis of mode discrimination in vertical-cavity surface-emitting lasers," Appl. Opt. 44, 2832-2838 (2005). [CrossRef] [PubMed]
  27. A. M. Sarangan and G. M Peake, "Enhancement of lateral mode discrimination in broad-area VCSELs using curved Bragg mirrors," J. Lightwave Technol. 22, 543-549 (2004). [CrossRef]
  28. T. Gentsy, K. Becker, I. Fischer, W. Elsässer C. Degen, P. Debernardi, and G. P. Bava, "Enhancement of lateral mode discrimination in broad-area VCSELs using curved Bragg mirrors," Phys. Rev. Lett. 94, 233901 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited