OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 15, Iss. 9 — Apr. 30, 2007
  • pp: 5827–5842

High numerical aperture imaging with different polarization patterns

N. Lindlein, S. Quabis, U. Peschel, and G. Leuchs  »View Author Affiliations

Optics Express, Vol. 15, Issue 9, pp. 5827-5842 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (563 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The modulation transfer function (MTF) is calculated for imaging with linearly, circularly and radially polarized light as well as for different numerical apertures and aperture shapes. Special detectors are only sensitive to one component of the electric energy density, e.g. the longitudinal component. For certain parameters this has advantages concerning the resolution when comparing to polarization insensitive detectors. It is also shown that in the latter case zeros of the MTF may appear which are purely due to polarization effects and which depend on the aperture angle. Finally some ideas are presented how to use these results for improving the resolution in lithography.

© 2007 Optical Society of America

OCIS Codes
(110.4100) Imaging systems : Modulation transfer function
(220.1230) Optical design and fabrication : Apodization
(220.3740) Optical design and fabrication : Lithography
(260.5430) Physical optics : Polarization

ToC Category:
Imaging Systems

Original Manuscript: March 2, 2007
Revised Manuscript: April 25, 2007
Manuscript Accepted: April 25, 2007
Published: April 27, 2007

N. Lindlein, S. Quabis, U. Peschel, and G. Leuchs, "High numerical aperture imaging with different polarization patterns," Opt. Express 15, 5827-5842 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. A 253, 358-379 (1959). [CrossRef]
  2. M. Mansuripur, "Distribution of light at and near the focus of high-numerical-aperture objectives," J. Opt. Soc. Am. A 3, 2086-2093 (1986). [CrossRef]
  3. M. Mansuripur, "Distribution of light at and near the focus of high-numerical-aperture objectives: erratum," J. Opt. Soc. Am. A 10, 382-383 (1993). [CrossRef]
  4. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000). [CrossRef]
  5. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "The focus of light-theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B B72, 109-113 (2001). [CrossRef]
  6. R. Dorn, S. Quabis, and G. Leuchs, "The focus of light - linear polarization breaks the rotational symmetry of the focal spot," J. Mod. Opt. 50, 1917-1926 (2003).
  7. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  8. S. F. Pereira and A. S. van de Nes, "Superresolution by means of polarization, phase and amplitude pupil masks," Opt. Commun. 234, 119-124 (2004). [CrossRef]
  9. A.S. van de Nes, L. Billy, S. F. Pereira, and J. J. M. Braat, "Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system," Opt. Express 12, 1281-1293 (2004). [CrossRef] [PubMed]
  10. R. Oldenbourg and P. Török, "Point-spread functions of a polarizing microscope equipped with high-numerical-aperture lenses," Appl. Opt. 39, 6325-6331 (2000). [CrossRef]
  11. P. R. T. Munro and P. Török, "Vectorial, high numerical aperture study of Nomarski’s differential interference contrast microscope," Opt. Express 13, 6833-6847 (2005). [CrossRef] [PubMed]
  12. C. J. R. Sheppard and H. J. Matthews, "Imaging in high-aperture optical systems," J. Opt. Soc. Am. A 4, 1354-1360 (1987). [CrossRef]
  13. M. Born and E. Wolf, Principles of Optics, 6th Edition. (Cambridge University Press, Cambridge New York Oakleigh, 1997).
  14. J. W. Goodman, Introduction to Fourier optics, 2nd. Edition (McGraw--Hill, New York, 1996).
  15. J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, "Imaging and time-resolved Spectroscopy of single molecules at an interface," Science 272, 255-2586 (1996). [CrossRef]
  16. K. Kamon, "Projection exposure apparatus," United States Patent 5365371 (filed 1993).
  17. K.-H. Schuster, "Radial polarisationsdrehende optische Anordnung und Mikrolithographie-Projektionsbelichtungsanlage damit," European Patent 0 764 858 A2 (filed 1996) and K.-H. Schuster, "Radial polarization-rotating optical arrangement and microlithographic projection exposure system," United States Patent 6885502 (filed 2002).
  18. M. Stalder and M. Schadt, "Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters," Opt. Lett. 21, 1948-1950 (1996). [CrossRef] [PubMed]
  19. D. C. Flanders, "Submicrometer periodicity gratings as artificial anisotropic dielectrics," Appl. Phys. Lett. 42, 492-494 (1983). [CrossRef]
  20. E. Gluch, H. Haidner, P. Kipfer, J. T. Sheridan, and N. Streibl, "Form birefringence of surface relief gratings and its angular dependence," Opt. Commun. 89, 173-177 (1992). [CrossRef]
  21. Z. Bomzon G. Biener, V. Kleiner, and E. Hasman, "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Opt. Lett. 27, 285-287 (2002). [CrossRef]
  22. A. Niv, G. Biener, V. Kleiner, and E. Hasman, "Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings," Opt. Lett. 28, 510-512 (2003). [CrossRef] [PubMed]
  23. E. Hasman, G. Biener, A. Niv, and V. Kleiner, "Space-variant polarization manipulation," Progress in Optics, E. Wolf, ed., (Elsevier Amsterdam 2005) Vol. 47, 215-289 . [CrossRef]
  24. U. Levy, C. Tsai, L. Pang, and Y. Fainman, "Engineering space-variant inhomogeneous media for polarization control," Opt. Lett. 29, 1718-1720 (2004). [CrossRef] [PubMed]
  25. C. Tsai, U. Levy, L. Pang, and Y. Fainman, "Form-birefringent space-variant inhomogeneous medium element for shaping point-spread functions," Appl. Opt. 45, 1777-1784 (2006). [CrossRef] [PubMed]
  26. N. Davidson and N. Bokor, "High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens," Opt. Lett. 29, 1318-1320 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited