OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 1 — Jan. 7, 2008
  • pp: 413–425

High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating

Junghyun Park, Hwi Kim, and Byoungho Lee  »View Author Affiliations


Optics Express, Vol. 16, Issue 1, pp. 413-425 (2008)
http://dx.doi.org/10.1364/OE.16.000413


View Full Text Article

Enhanced HTML    Acrobat PDF (309 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High order plasmonic Bragg reflection in the metal-insulator-metal (MIM) waveguide Bragg grating (WBG) and its applications are proposed and demonstrated numerically. With the effective index method and the standard transfer matrix method, we reveal that there exist high order plasmonic Bragg reflections in MIM WBG and corresponding Bragg wavelengths can be obtained. Contrary to the high order Bragg wavelengths in the case of the conventional dielectric slab waveguide, the results of the MIM WBG exhibit red shifts of tens of nanometers. We also propose a method to design a MIM WBG to have high order plasmonic Bragg reflection at a desired wavelength. The MIM WBG operating in visible spectral regime, which requires quite accurate fabrication process with grating period of 100 to 200 nm for the fundamental Bragg reflection, can be implemented by using the higher order plasmonic Bragg reflection with grating period of 400 to 600 nm. It is shown that the higher order plasmonic Bragg reflection can be employed to implement a narrow reflection bandwidth as well. We also address the dependence of the filling factor upon the bandgap and discuss the quarter-wave stack condition and the second bandgap closing.

© 2008 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 5, 2007
Revised Manuscript: December 28, 2007
Manuscript Accepted: December 28, 2007
Published: January 4, 2008

Citation
Junghyun Park, Hwi Kim, and Byoungho Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express 16, 413-425 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-413


Sort:  Year  |  Journal  |  Reset  

References

  1. H. Rather, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  3. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004). [CrossRef]
  4. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightwave Technol. 23, 413-422 (2005). [CrossRef]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaus, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  6. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000). [CrossRef]
  7. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  8. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986). [CrossRef]
  9. R. Zia, M. D. Selker, P. B. Catrysse, and M. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004). [CrossRef]
  10. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Planar metal plasmon waveguides: Frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005). [CrossRef]
  11. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006). [CrossRef]
  12. I.-M. Lee, J. Jung, J. Park, H. Kim, and B. Lee, "Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves," Opt. Express 15, 16596-16603 (2007). [CrossRef] [PubMed]
  13. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, "Compact Bragg gratings for long-range surface plasmon polaritons," J. Lightwave Technol. 24, 912-918 (2006). [CrossRef]
  14. B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005). [CrossRef]
  15. A. Hosseini and Y. Massoud, "A low-loss metal-insulator-metal plasmonic Bragg reflector," Opt. Express 14, 11318-11323 (2006). [CrossRef]
  16. Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett. 19, 91-93 (2007). [CrossRef]
  17. A. Hosseini and Y. Massoud, "Subwavelength plasmonic Bragg reflector structures for on-chip optoelectronic applications," International Symposium on Circuits and Systems, New Orleans, LA, 2283-2286 (2007).
  18. J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Letters 6, 1928-1932 (2006). [CrossRef] [PubMed]
  19. D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. D. Lee, "Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings," Opt. Express 14, 3503-3511 (2006). [CrossRef] [PubMed]
  20. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. A 71, 811-818 (1981). [CrossRef]
  21. M. G. Moharam, E. B. Grann, and D. A. Pommet, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1067-1076 (1995). [CrossRef]
  22. P. Lalanne, "Improved formulation of the coupled-wave method for two-dimensional gratings," J. Opt. Soc. Am. A 14, 1592-1598 (1997). [CrossRef]
  23. H. Kim, I.-M. Lee, and B. Lee, "Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis," J. Opt. Soc. Am. A 24, 2313-2327 (2007). [CrossRef]
  24. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley Intersceince, Hoboken, NJ, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited