OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 10 — May. 12, 2008
  • pp: 6833–6845

Spectral dynamics of 405 nm (Al,In)GaN laser diodes grown on GaN and SiC substrate

Tobias Meyer, Harald Braun, Ulrich T. Schwarz, Sönke Tautz, Marc Schillgalies, Stephan Lutgen, and Uwe Strauss  »View Author Affiliations


Optics Express, Vol. 16, Issue 10, pp. 6833-6845 (2008)
http://dx.doi.org/10.1364/OE.16.006833


View Full Text Article

Enhanced HTML    Acrobat PDF (311 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the spectral properties of violet 405 nm (Al,In)GaN laser diodes (LDs). Depending on the substrate the LDs are grown on, the lasing spectra show significant differences. LDs grown on low dislocation GaN substrate have a broad spectrum with several longitudinal modes, while LDs grown on SiC substrate are lasing on a single longitudinal mode. With increasing current, the laser emission of LDs grown on SiC substrate jumps from one longitudinal mode to another (mode hopping), whereas GaN substrate LDs show a smooth but asymmetric mode comb. The different envelopes of these spectra can be understood by assuming a variation of the gain for each individual longitudinal mode. With a high spectral resolution setup, we measure the gain of each longitudinal mode, employing the Hakki–Paoli method. Measurements show a slightly fluctuating gain for the modes of GaN substrate LDs, but much larger fluctuations for LDs on SiC substrate. We carry out simulations of the longitudinal mode spectrum of (Al,In)GaN laser diodes using a rate equation model with nonlinear gain (self saturation, symmetric and asymmetric cross saturation) and including gain fluctuations. With a set of parameters which is largely identical for LDs on either substrate, the simulated spectra truly resemble those typical for LDs on GaN or SiC substrate.

© 2008 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3430) Lasers and laser optics : Laser theory
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 10, 2008
Revised Manuscript: April 21, 2008
Manuscript Accepted: April 21, 2008
Published: April 28, 2008

Citation
Tobias Meyer, Harald Braun, Ulrich T. Schwarz, Sönke Tautz, Marc Schillgalies, Stephan Lutgen, and Uwe Strauss, "Spectral dynamics of 405 nm (Al,In)GaN laser diodes grown on GaN and SiC substrate," Opt. Express 16, 6833-6845 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-10-6833


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kneissl, Z. Yang, M. Teepe, C. Knollenberg, O. Schmidt, P. Kiesel, N. M. Johnson, S. Schujman, and L. J. Schowalter, "Ultraviolet semiconductor laser diodes on bulk AlN," Appl. Phys. Lett. 101, 123103 (2007).
  2. T. Miyoshi, T. Yanamoto, T. Kozaki, S. Nagahama, Y. Narukawa, M. Sano, T. Yamada, and T. Mukai, "Recent status of white LEDs and nitride LDs," Proc. SPIE 6894, 689414 (2008). [CrossRef]
  3. T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, "CW lasing of current injection blue GaN-based vertical cavity surface emitting laser," Appl. Phys. Lett. 92, 141102 (2008). [CrossRef]
  4. K. Kojima, U. T. Schwarz, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, "Optical gain spectra for near UV to aquamarine (Al,In)GaN laser diodes," Opt. Express 15, 7730 (2007). [CrossRef] [PubMed]
  5. D. F. Feezell, M. C. Schmidt, R. M. Farrell, K.-C. Kim, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. Den-Baars, and S. Nakamura, "AlGaN-cladding-free nonpolar InGaN/GaN laser diodes," Jpn. J. Appl. Phys. 46, L284 (2007). [CrossRef]
  6. R. M. Farrell, D. F. Feezell, M. C. Schmidt, D. A. Haeger, K.M. Kelchner, K. Iso, H. Yamada, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, "Continuous-wave operation of AlGaN-cladding-free nonpolar m-plane InGaN/GaN laser diodes," Jpn. J. Appl. Phys. 46, L761 (2007). [CrossRef]
  7. K. Kojima, M. Funato, Y. Kawakami, S. Masui, S. Nagahama, and T. Mukai, "Stimulated emission at 474nm from an InGaN laser diode structure grown on a (11¯22) GaN substrate," Appl. Phys. Lett. 91, 251107 (2007). [CrossRef]
  8. M. Rosetti, R. M. Smeeton, W.-S. Tan, M. Kauer, S. E. Hooper, J. Heffernan, H. Xiu, and C. J. Humphreys, "Degradation of InGaN/GaN laser diodes analyzed by micro-photoluminescence and micro-electroluminescence mappings," Appl. Phys. Lett. 92, 151110 (2008). [CrossRef]
  9. B. W. Hakki and T. L. Paoli, "cw degradation at 300 K of GaAs double-heterostructure junction lasers. II. Electronic gain," J. Appl. Phys. 44, 4113 (1973). [CrossRef]
  10. B. W. Hakki and T. L. Paoli, "Gain spectra in GaAs double-heterostructure injection lasers," J. Appl. Phys. 46, 1299 (1974). [CrossRef]
  11. G. P. Agrawal and N. K. Dutta, Semiconductor lasers, 2nd ed. (Kluwer Academic Publishers, 1993).
  12. M. Yamada, "Advanced theory of semiconductor lasers," in Handbook of semiconductor lasers and photonic integrated circuits, Y. Suematsu and A. R. Adams, eds. (Chapman & Hall, 1994).
  13. L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits, Wiley series in microwave and optical engineering (Wiley, 1995).
  14. M. Yamada and Y. Suematsu, "Analysis of gain suppression in undoped injection lasers," J. Appl. Phys. 52, 2653 (1981). [CrossRef]
  15. M. Yamada, "Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers," J. Appl. Phys. 66, 81 (1989). [CrossRef]
  16. B. Witzigmann, V. Laino, M. Luisier, F. Roemer, G. Feicht, and U. T. Schwarz, "Simulation and design of optical gain in In(Al)GaN/GaN short wavelength lasers," Proc. SPIE 6184, 61840E (2006). [CrossRef]
  17. Y. P. Varshni, "Temperature dependence of the energy gap in semiconductors," Physica 34, 149 (1967). [CrossRef]
  18. C. Eichler, S.-S. Schad, M. Seyboth, F. Habel, M. Scherer, S. Miller, A. Weimar, A. Lell, V. Härle, and D. Hofstetter, "Time resolved study of laser diode characteristics during pulsed operation," Phys. Status Solidi C 0, 2283 (2003). [CrossRef]
  19. H. Braun, H.-M. Solowan, D. Scholz, T. Meyer, U. T. Schwarz, S. Brüninghoff, A. Lell, and U. Strau�?, "Lateral and longitudinal mode pattern of broad ridge 405 nm (Al,In)GaN laser diodes," J. Appl. Phys. 103, 073102 (2008). [CrossRef]
  20. H. Braun, T. Meyer, D. Scholz, U. T. Schwarz, S. Brüninghoff, A. Lell, and U. Strau�?, "Spectral and time resolved scanning near-field microscopy of broad area 405 nm InGaN laser diode dynamics,"Phys. Status Solidi C (to be published).
  21. B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, "Microscopic analysis of optical gain in InGaN/GaN quantum wells," Appl. Phys. Lett. 88, 021104 (2006). [CrossRef]
  22. U. T. Schwarz, H. Braun, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, "Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range," Proc. SPIE 6485, 648506 (2007). [CrossRef]
  23. U. T. Schwarz, E. Sturm, W. Wegscheider, V. Kümmler, A. Lell, and V. Härle, "Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers," Appl. Phys. Lett. 83, 4095 (2003). [CrossRef]
  24. F. H. Peters and D. T. Cassidy, "Strain and scattering related spectral output of 1.3-?m InGaAsP semiconductor diode lasers," Appl. Optics 30, 1036 (1991). [CrossRef]
  25. B. Corbett and D. McDonald, "Single longitudinal mode ridge waveguide 1.3�??m Fabry-Perot laser by modal perturbation," Electron. Lett. 31, 2181 (1995). [CrossRef]
  26. B. Roycroft, P. Lambkin, S. Riesner, B. Corbett, and J. F. Donegan, "Transition from perturbed to coupled-cavity behavior with asymmetric spectral emission in ridge lasers emitting at 1.55?m," IEEE Photon. Technol. Lett. 19, 58 (2007). [CrossRef]
  27. S. O�??Brien, A. Amann, R. Fehse, S. Osborne, and E. P. O�??Reilly, "Spectral manipulation in Fabry-Perot lasers: perturbative inverse scattering approach," J. Opt. Soc. Am. B 23, 1046 (2006). [CrossRef]
  28. U. T. Schwarz, W. Wegscheider, A. Lell, and V. Härle, "Nitride-based in-plane laser diodes with vertical current path," Proc. SPIE 5365, 267 (2004) [CrossRef]
  29. V. Laino, F. Roemer, B. Witzigmann, C. Lauterbach, U. T. Schwarz, C. Rumbolz, M. O. Schillgalies, M. Furitsch, A. Lell, and V. H¨arle, "Substrate Modes of (Al,In)GaN Semiconductor Laser Diodes on SiC and GaN Substrates," IEEE J. Quantum Electron. 43, 16 (2007) [CrossRef]
  30. U. Strauss, C. Eichler, C. Rumbolz, A. Lell, S. Lutgen, S. Tautz, M. O. Schillgalies, and S. Brüninghoff, "Beam quality of blue InGaN lasers for projection," Phys. Status Solidi C (to be published).
  31. C. Eichler, S.-S. Schad, F. Scholz, D. Hofstetter, S. Miller, A. Weimar, A. Lell, and V. Härle, "Observation of temperature-independent longitudinal-mode patterns in violet-blue InGaN-based laser diodes," IEEE Photon. Technol. Lett. 17, 1782 (2005). [CrossRef]
  32. N. K. van der Laak, R. A. Oliver, M. J. Kappers, and C. J. Humphreys, "Role of gross well-width fluctuations in bright, green-emitting single InGaN/GaN quantum well structures," Appl. Phys. Lett. 90, 121911 (2007). [CrossRef]
  33. U. Strau�?, S. Brüninghoff, M. Schillgalies, C. Vierheilig, N. Gmeinwieser, V. Kümmler, G. Brüderl, S. Lutgen, A. Avramescu, D. Dini, C. Eichler, A. Lell, and U. T. Schwarz. "True blue InGaN laser for pico size projectors," Proc. SPIE 6894, 689417 (2008). [CrossRef]
  34. R. A. Oliver, M. J. Kappers, C. J. Humphreys, and G. A. D. Briggs, "Growth modes in heteroepitaxy of InGaN on GaN," J. Appl. Phys. 97, 013707 (2005). [CrossRef]
  35. H. Sato, T. Sugahara, Y. Naoi, and S. Sakai, "Compositional inhomogeneity of InGaN grown on sapphire and bulk GaN substrates by metalorganic chemical vapor deposition," Jpn. J. Appl. Phys. 37, 2013 (1998). [CrossRef]
  36. K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, "Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates," J. Appl. Phys. 101, 033104 (2007). [CrossRef]
  37. N. Duxbury, U. Bangert, P. Dawson, E. J. Thrush, W. Van der Stricht, K. Jacobs, and I. Moerman, "Indium segregation in InGaN quantum-well structures," Appl. Phys. Lett. 76, 1600 (2000). [CrossRef]
  38. A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, and P. Hinze, "Suppression of non-radiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency," Phys. Rev. Lett. 95, 127, 402 (2005).
  39. C. Netzel, H. Bremers, L. Hoffmann, D. Fuhrmann, U. Rossow, and A. Hangleiter, "Emission and recombination characteristics of Ga1�??xInxN/GaN quantum well structures with nonradiative recombination suppression by V- shaped pits," Phys. Rev. B 76, 155322 (2007). [CrossRef]
  40. M. Ahmed, M. Yamada, and M. Saito, "Numerical modeling of intensity and phase noise in semiconductor lasers," IEEE J. Quantum Electron. 37, 1600 (2001). [CrossRef]
  41. M. Ahmed, M. Yamada, and S. Abdulrahmann, "A multimode simulation model of mode-competition low-frequency noise in semiconductor lasers," Fluctuation and Noise Letters 1, L163 (2001). [CrossRef]
  42. M. Ahmed and M. Yamada, "Influence of instantaneous mode competition on the dynamics of semiconductor lasers," IEEE J. Quantum Electron. 38, 682 (2002). [CrossRef]
  43. G. Ropars, A. Le Floch, and G. P. Agrawal, "Spectral and spatial dynamics in InGaN blue-violet lasers," Appl. Phys. Lett. 89, 241128 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited