OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 10 — May. 12, 2008
  • pp: 7397–7406

Dispersive contour-path algorithm for the two-dimensional finite-difference time-domain method

Ahmad Mohammadi, Tahmineh Jalali, and Mario Agio  »View Author Affiliations


Optics Express, Vol. 16, Issue 10, pp. 7397-7406 (2008)
http://dx.doi.org/10.1364/OE.16.007397


View Full Text Article

Enhanced HTML    Acrobat PDF (150 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have extended the contour-path effective-permittivity (CP-EP) finite-difference time-domain (FDTD) algorithm by A. Mohammadi et al., Opt. Express 13, 10367 (2005), to linear dispersive materials using the Z-transform formalism. We test our method against staircasing and the exact solution for plasmon spectra of metal nanoparticles. We show that the dispersive contour-path (DCP) approach yields better results than staircasing, especially for the cancellation of spurious resonances.

© 2008 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.0130) Integrated optics : Integrated optics
(290.0290) Scattering : Scattering

ToC Category:
Numerical Methods

History
Original Manuscript: March 20, 2008
Revised Manuscript: April 23, 2008
Manuscript Accepted: April 27, 2008
Published: May 6, 2008

Citation
Ahmad Mohammadi, Tahmineh Jalali, and Mario Agio, "Dispersive contour-path algorithm for the two-dimensional finite-difference time-domain method," Opt. Express 16, 7397-7406 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-10-7397


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  2. J.-Y. Lee and N.-H. Myung, "Locally tensor conformal FDTD method for modeling arbitrary dielectric surfaces," Microwave Opt. Technol. Lett. 23, 245-249 (1999). [CrossRef]
  3. A. Ditkowski, K. Dridi, and J. S. Hesthaven, "Convergent Cartesian grid methods for Maxwell�??s equations in complex geometries," J. Comput. Phys. 170, 39-80 (2001). [CrossRef]
  4. W. Yu and R. Mittra, "A conformal finite difference time domain technique for modeling curved dielectric surfaces," Microwave Opt. Technol. Lett. 11, 25-27 (2001).
  5. K. H. Dridi, J. S. Hesthaven, and A. Ditkowski, "Staircase-free finite-difference time-domain formulation for general materials in complex geometries," IEEE Trans. Antennas Propag. 49, 749-756 (2001). [CrossRef]
  6. T. I. Kosmanis and T. D. Tsiboukis, "A systematic and topologically stable conformal finite-difference timedomain algorithm for modeling curved dielectric interfaces in three dimensions," IEEE Trans. Microwave Theory Tech. 51, 839-847 (2003). [CrossRef]
  7. J. Nadobny, D. Sullivan, W. Wlodarczyk, P. Deuflhard, and P. Wust, "A 3-D tensor FDTD-formulation for treatment of slopes interfaces in electrically inhomogeneous media," IEEE Trans. Antennas Propag. 51, 1760-1770 (2003). [CrossRef]
  8. A. Mohammadi, H. Nadgaran, and M. Agio, "Contour-path effective permittivities for the twodimensional finite-difference time-domain method," Opt. Express 13, 10367-10381 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-25-10367. [CrossRef] [PubMed]
  9. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31, 2972-2974 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-20-2972. [CrossRef] [PubMed]
  10. W. J. Padilla, D. N. Basov, and D. R. Smith, "Negative refractive index metamaterials," Mat. Today 9, 28-35 (2006). [CrossRef]
  11. V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007). [CrossRef]
  12. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  13. S. A. Maier and H. A. Atwater, "Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  14. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  15. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, "Plasmonics: the next chip-scale technology," Mat. Today 9,20-27 (2006). [CrossRef]
  16. A. Mohammadi and M. Agio, "Dispersive contour-path finite-difference time-domain algorithm for modeling surface plasmon polaritons at flat interfaces," Opt. Express 14, 11330-11338 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-23-11330. [CrossRef] [PubMed]
  17. Y. Zhao and Y. Hao, "Finite-difference time-domain study of guided modes in nano-plasmonic waveguides," IEEE Trans. Antennas Propag. 55, 3070-3077 (2007). [CrossRef]
  18. A. Deinega and I. Valuev, "Subpixel smoothing for conductive and dispersive media in the finite-difference time-domain method," Opt. Lett. 32, 3429-3431 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-23-3429. [CrossRef] [PubMed]
  19. D. M. Sullivan, "Z-transform theory and the FDTD method," IEEE Trans. Antennas Propag. 44, 28-34 (1996). [CrossRef]
  20. M. Born and E. Wold, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  21. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).
  22. H. Xu, J. Aizpurua, M. Kall, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000). [CrossRef]
  23. C. Oubre and P. Nordlander, "Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method," J. Phys. Chem. B 108, 17740-17747 (2004). [CrossRef]
  24. C. Oubre and P. Nordlander, "Finite-difference time-domain studies of the optical properties of nanoshell dimers," J. Phys. Chem. B 109, 10042-10051 (2005). [CrossRef]
  25. F. Kaminski, V. Sandoghdar, and M. Agio, "Finite-difference time-domain modeling of decay rates in the near field of metal nanostructures," J. Comput. Theor. Nanosci. 4, 635-643 (2007).
  26. A. C. Cangellaris, and D. B. Wright, "Analysis of the numerical error caused by the stair-stepped approximation of a conducting boundary in FDTD simulations of electromagnetic phenomena," IEEE Trans. Antennas Propag. 39, 1518-1524 (1991). [CrossRef]
  27. CRC Handbook of Chemistry and Physics, 87th ed., D. R. Lide, ed. (CRC-Press, 2006) http://www.hbcpnetbase.com.
  28. A. Vial, A.-S. Grimault, D. Macıas, D. Biarchesi, and M. Lamy de la Chapelle, "Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005). [CrossRef]
  29. O. Ramadan and A. Y. Oztoprak, "Z-transform implementation of the perfectly matched layer for truncating FDTD domains," IEEE Microwave Wirel. Compon. Lett. 13, 402-404 (2003). [CrossRef]
  30. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  31. P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005). [CrossRef] [PubMed]
  32. Ch. Hafner, Post-Modern Electromagnetics: using Intelligent MaXwell Solvers, (John Wiley & Sons, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited