OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 10 — May. 12, 2008
  • pp: 7460–7470

Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats  »View Author Affiliations


Optics Express, Vol. 16, Issue 10, pp. 7460-7470 (2008)
http://dx.doi.org/10.1364/OE.16.007460


View Full Text Article

Enhanced HTML    Acrobat PDF (1506 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that the coupling between plasmonic modes of oriented metallic nanorods results in the formation of an extended (guided) plasmonic mode of the nanorod array. The electromagnetic field distribution associated to this mode is found to be concentrated between the nanorods within the assembly and propagates normally to the nanorod long axes, similar to a photonic mode waveguided by an anisotropic slab. This collective plasmonic mode determines the optical properties of nanorod assemblies and can be tuned in a wide spectral range by changing the nanorod array geometry. This geometry represents a unique opportunity for light guiding applications and manipulation at the nanoscale as well as sensing applications and development of molecular plasmonic devices.

© 2008 Optical Society of America

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 10, 2008
Revised Manuscript: April 25, 2008
Manuscript Accepted: April 28, 2008
Published: May 8, 2008

Citation
G. A. Wurtz, W. Dickson, D. O'Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, "Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime," Opt. Express 16, 7460-7470 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-10-7460


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. S. Friedman, M. C. McAlpine, D. S. Ricketts, D. Ham, C. M. Lieber, "High-speed integrated nanowire circuits," Nature 434,1085 (2005). [CrossRef] [PubMed]
  2. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003). [CrossRef] [PubMed]
  3. J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C. M. Lieber, "Ge/Si nanowire heterostructures as high-performance field-effect transistors," Nature 441, 489-493 (2006). [CrossRef] [PubMed]
  4. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, "Growth of nanowire superlattice structures for nanoscale photonics and electronics," Nature 415, 617-620 (2002). [CrossRef] [PubMed]
  5. P. Mühlschlegel, H.-J. Eisler, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005). [CrossRef] [PubMed]
  6. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. k. Yuan, A. K. Sarychev, V. P. Drachev, A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  7. P. Evans, W. R. Hendren, R. Atkinson, G. A. Wurtz, W. Dickson, A. V. Zayats, and R. J. Pollard, "Growth and properties of gold and nickel nanorods in thin film alumina," Nanotechnology 17, 5746-5753 (2006). [CrossRef]
  8. K.-S. Lee, M. A. El-Sayed, "Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition," J. Phys. Chem. B 110, 19220-19225 (2006). [CrossRef] [PubMed]
  9. M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, "Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation," Phys. Rev. B 73, 155419-155424 (2006). [CrossRef]
  10. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427-155430 (2003). [CrossRef]
  11. R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, R. J. Pollard, "Anisotropic optical properties of arrays of gold nanorods embedded in alumina," Phys. Rev. B 73, 235402-235408 (2006). [CrossRef]
  12. A. Ono, J.-i. Kato, and S. Kawata, "Subwavelength Optical Imaging through a Metallic Nanorod Array," Phys. Rev. Lett. 95, 267407-267410 (2005). [CrossRef]
  13. V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, "Resonant light interaction with plasmonic nanowire systems," J. Opt. A: Pure Appl. Opt. 7, S32-S37 (2005). [CrossRef]
  14. A. I. Rahachou, and I. V. Zozulenko, "Light propagation in nanorod arrays," J. Opt. A: Pure Appl. Opt. 9, 265-270 (2007). [CrossRef]
  15. C. Reinhardt, S. Passinger, and B. N. Chichkov, "Rapid laser prototyping of plasmonic components," Appl. Phys. Lett. 89, 231117 (2006). [CrossRef]
  16. G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, W. Harrison, C. Bower, A. V. Zayats, "Molecular Plasmonics with Tunable Exciton-Plasmon Coupling Strength in J-Aggregate Hybridized Au Nanorod Assemblies," Nano Lett. 7, 1297-1303 (2007). [CrossRef] [PubMed]
  17. P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O'Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, "Plasmonic Core/Shell Nanorod Arrays: Subattoliter Controlled Geometry and Tunable Optical Properties," J. Phys. Chem. C 111, 12522-12527 (2007). [CrossRef]
  18. S. Link and M. A. El-Sayed, "Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods," J. Phys. Chem. B 103, 8410-8426 (1999). [CrossRef]
  19. S. W. Prescott, P. Mulvaney, "Gold nanorod extinction spectra," J. Appl. Phys. 99, 123504-123507 (2006). [CrossRef]
  20. P. K. Jain, S. Eustis, and M. A. El-Sayed, "Plasmon Coupling in Nanorod Assemblies: Optical Absorption, Discrete Dipole Approximation Simulation, and Exciton-Coupling Model," J. Phys. Chem. B 110, 13512-13522 (2006). [CrossRef]
  21. J. J. Xiao, J. P. Huang, and K. W. Yu, "Optical response of strongly coupled metal nanoparticles in dimer arrays," Phys. Rev. B 71, 045404-045411 (2005). [CrossRef]
  22. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. d. Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420-235432 (2005). [CrossRef]
  23. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003). [CrossRef]
  24. E. J. Smythe, E. Cubukcu, and F. Capasso, "Optical properties of surface plasmon resonances of coupled metallic nanorods," Opt. Express 15, 7439-7447 (2007). [CrossRef] [PubMed]
  25. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000).
  26. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics - A route to Nanoscale Optical Devices," Adv. Mater. 13, 1501-1505 (2001). [CrossRef]
  27. D. S. Citrin, "Coherent Excitation Transport in Metal-Nanoparticle Chains," Nano Lett. 4, 2323-2330 (2004). [CrossRef]
  28. W. H. Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429-125436 (2004).
  29. R. d. Waele, A. F. Koenderink, and A. Polman, "Tunable Nanoscale localization of Energy on Plasmon Particle Arrays," Nano Lett. 7, 2004-2008 (2007). [CrossRef]
  30. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, A. Requicha, and B. E. Koel, "Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit," Proc. SPIE 4810, 71-81 (2002). [CrossRef]
  31. S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402-205406 (2003). [CrossRef]
  32. S. Y. Park and D. Stroud, "Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation," Phys. Rev. B 69, 125418-125424 (2004). [CrossRef]
  33. A. F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402-033405 (2006). [CrossRef]
  34. A. Vlad, M. Matefi-Tempfli, S. Faniel, V. Bayot, S. Melinte, L. Piraux, and S. Matefi-Tempfli, "Controlled growth of single nanowires within a supported alumina template," Nanotechnology 17, 4873-4876 (2006). [CrossRef]
  35. B. Wolfrum, Y. Mourzina, D. Mayer, D. Schwaab, and A. Offenhusser, "Fabrication of large-scale patterned gold-nanopillar arrays on a silicon substrate using imprinted porous alumina templates," Small 2, 1256-1260 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited