OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 11 — May. 26, 2008
  • pp: 7680–7685

Coupled metal gap waveguides as plasmonic wavelength sorters

Zhiwen Kang and Guo Ping Wang  »View Author Affiliations


Optics Express, Vol. 16, Issue 11, pp. 7680-7685 (2008)
http://dx.doi.org/10.1364/OE.16.007680


View Full Text Article

Enhanced HTML    Acrobat PDF (268 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a coupled metal gap waveguide structure for realizing plasmonic wavelength sorters. Theoretical analysis from the coupled-wave theory reveals that wavelength dependent coupling length of guided surface plasmon polaritons contributes to the routing of different wavelengths to different output ports with reasonable high extinction ratio. The analytical results are confirmed by the finite-difference time-domain numerical simulations. Our result may provide an alternative way to construct nanoscale frequency multiplexers, routers, and sorters for nanophotonic integration and optical communication.

© 2008 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 8, 2008
Revised Manuscript: April 28, 2008
Manuscript Accepted: April 28, 2008
Published: May 12, 2008

Citation
Zhiwen Kang and Guo Ping Wang, "Coupled metal gap waveguides as plasmonic wavelength sorters," Opt. Express 16, 7680-7685 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-7680


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, "Plasmonics: merging photonics and electrics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  3. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mater. 2, 229-232 (2003). [CrossRef]
  4. H. Raether, Surface Plasmon (Springer-Verlag, Berlin, 1988).
  5. A. V. Krasavin and A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, 211101 (2007). [CrossRef]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  7. B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides: bends and directional couplers," Appl. Phys. Lett. 91, 081111 (2007). [CrossRef]
  8. B. Wang and G. P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Opt. Lett. 29, 1992-1994 (2004). [CrossRef] [PubMed]
  9. Z. Sun, "Beam splitting with a medified metallic nano-optic lens," Appl. Phys. Lett. 89, 261119 (2006). [CrossRef]
  10. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002). [CrossRef]
  11. B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surface," Appl. Phys. Lett. 87, 013107 (2005). [CrossRef]
  12. Z. Han, L. Liu, and E. Forsberg, "Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons," Opt. Commun. 259, 690-695 (2006). [CrossRef]
  13. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004). [CrossRef]
  14. A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, "Multiplexing surface plasmon polaritons on nanowires," Appl. Phys. Lett. 91, 083115 (2007). [CrossRef]
  15. L. Chen, B. Wang, and G. P. Wang, "High efficiency 900 bending metal heterowaveguides for nanophotonic integration," Appl. Phys. Lett. 89, 243120 (2006). [CrossRef]
  16. A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, "Plasmonic crystal demultiplexer and multiports," Nano Lett. 7, 1697-1700 (2007). [CrossRef] [PubMed]
  17. V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, and A. V. Zayats, "Dispersing light with surface plasmon polaritonic crystals," Phys. Rev. Lett. 99, 083901 (2007). [CrossRef] [PubMed]
  18. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Wavelength selective nanophotonic components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007). [CrossRef] [PubMed]
  19. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, "Plasmonic photon sorters for spectral and polarimetric imaging," Nat. Photonics 2, 161-164 (2008). [CrossRef]
  20. X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, "All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration," Phys. Rev. Lett. 97, 073901 (2006). [CrossRef] [PubMed]
  21. E. N. Economous, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  22. A. Locatelli, M. Conforti, D. Modotto, and C. De Angelis, "Diffraction engineering in arrays of photonic crystal waveguides," Opt. Lett. 30, 2894-2896 (2005). [CrossRef] [PubMed]
  23. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1984).
  24. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B. 6, 4370-4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited