OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 11 — May. 26, 2008
  • pp: 7860–7868

Suppressing normal mode excitation by quantum interference in a cavity-atom system

Jiepeng Zhang, Gessler Hernandez, and Yifu Zhu  »View Author Affiliations


Optics Express, Vol. 16, Issue 11, pp. 7860-7868 (2008)
http://dx.doi.org/10.1364/OE.16.007860


View Full Text Article

Enhanced HTML    Acrobat PDF (268 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Collective coupling of multiple atoms with a cavity mode produces two normal modes that are separated in energy by Vacuum Rabi splitting. We show that the normal mode excitation of the cavity-atom system can be suppressed by coupling a control laser to the atomic system from free space. The control laser splits the normal mode of the cavity-atoms system and opens two excitation channels. The destructive quantum interference between the two channels renders the cavity-atoms system opaque to the light coupled to the cavity-atom system. We demonstrate suppression of the normal mode excitation by the destructive quantum interference in an experiment using cold Rb atoms confined in an optical cavity.

© 2008 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.3690) Atomic and molecular physics : Line shapes and shifts
(270.1670) Quantum optics : Coherent optical effects
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: February 21, 2008
Revised Manuscript: April 13, 2008
Manuscript Accepted: April 14, 2008
Published: May 16, 2008

Citation
Jiepeng Zhang, Gessler Hernandez, and Yifu Zhu, "Suppressing normal mode excitation by quantum interference in a cavity-atom system," Opt. Express 16, 7860-7868 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-7860


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. R. Berman, Cavity Quantum Electrodynamics (Academic, San Diego, 1994).
  2. E. T. Jaynes and F. W. Cummings, "Comparison of quantum and semiclassical radiation theories with application to the beam maser," Proc. IEEE 51, 89-109(1963). [CrossRef]
  3. J. J. Sanchez-Mondragon, N. B. Narozhny, and J. H. Eberly, "Theory of Spontaneous-Emission Line Shape in an Ideal Cavity," Phys. Rev. Lett. 51, 550-553(1983). [CrossRef]
  4. A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, "Observation of the Vacuum Rabi Spectrum for One Trapped Atom," Phys. Rev. Lett. 93, 233603(1-4) (2004). [CrossRef] [PubMed]
  5. G. S. Agarwal, "Vacuum-Field Rabi Splittings in Microwave Absorption by Rydberg Atoms in a Cavity," Phys. Rev. Lett. 53, 1732-1735(1984). [CrossRef]
  6. M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, "Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity," Phys. Rev. Lett. 63, 240 - 243 (1989). [CrossRef] [PubMed]
  7. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, "Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations," Phys. Rev. Lett. 64, 2499-2502 (1990). [CrossRef] [PubMed]
  8. J. Gripp, S. L. Mielke, and L. A. Orozco, "Evolution of the vacuum Rabi peaks in a detuned atom-cavity system," Phys. Rev. A 56, 3262-3273 (1997). [CrossRef]
  9. J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, "Normal Mode Splitting and Mechanical Effects of an Optical Lattice in a Ring Cavity," Phys. Rev. Lett. 96, 023002(1-4) (2006) [CrossRef] [PubMed]
  10. G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble,"Optical bistability and photon statistics in cavity quantum electrodynamics," Phys. Rev. Lett. 67, 1727 - 1730 (1991). [CrossRef] [PubMed]
  11. P. Grangier, J. F. Roch, J. Roger. L. A. Lugiato, E. M. Pessina, G. Scandroglio, P. Galatola, "2-photon double-beam optical bistability in the dispersive regime," Phys. Rev. A 46, 2735-2743 (1992). [CrossRef] [PubMed]
  12. S. E. Harris, "Electromagnetically Induced Transparency," Phys. Today 50, 36-42 (1997). [CrossRef]
  13. E. Arimondo, "Coherent population trapping in laser spectroscopy," in Progress in Optics, E. Wolf, ed., (Elsevier, Amsterdam, 1996) Vol. 31, pp. 257-354.
  14. M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, "Intracavity electromagnetically induced transparency," Opt. Lett. 23, 295-297 (1998). [CrossRef]
  15. H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, "Cavity-linewidth narrowing by means of electromagnetically induced transparency," Opt. Lett. 25, 1732-1735 (2000). [CrossRef]
  16. G. Hernandez, J. Zhang, and Y. Zhu, "Vacuum Rabi splitting and intracavity dark state in a cavity-atoms system," Phys. Rev. A 76, 053814 (1-4) (2007). [CrossRef]
  17. A. Joshi and M. Xiao, "Optical multistability in three-level atoms inside an optical ring cavity", Phys. Rev. Lett. 91, 143904-(1-4) (2003). [CrossRef] [PubMed]
  18. J. Zhang, G. Hernandez, and Y. Zhu, "Slow light with cavity electromagnetically induced transparency," Opt. Lett. 33, 46-48 (2008). [CrossRef]
  19. V. S. C. Rao, S. D. Gupta, and G. S. Agarwal, "Atomic absorbers for controlling pulse propagation in resonators," Opt. Lett. 29, 307-309 (2004). [CrossRef]
  20. V. S. C. Manga Rao and S. D. Gupta, "Sub and superluminal propagation through stratified media," IEEE Proc.-Circuits Syst. IEE Proceedings-Circuits Devices and Systems 152, 527-531 (2005).
  21. H. Kang, G. Hernadez, and Y. Zhu, "Superluminal and slow light propagation in cold atoms" Phys. Rev. A (Rapid Commun) 70, 011801(1-4) (R) (2004)
  22. H. Kang, L. Wen, and Y. Zhu, "Normal or anomalous dispersion and gain in a resonant coherent medium," Phys. Rev. A 68, 063806(1-5) (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited