OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 11 — May. 26, 2008
  • pp: 8106–8116

Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region

Hung-Ying Chen, Hon-Way Lin, Chen-Ying Wu, Wei-Chun Chen, Jyh-Shin Chen, and Shangjr Gwo  »View Author Affiliations


Optics Express, Vol. 16, Issue 11, pp. 8106-8116 (2008)
http://dx.doi.org/10.1364/OE.16.008106


View Full Text Article

Enhanced HTML    Acrobat PDF (1090 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Vertically aligned gallium nitride (GaN) nanorod arrays grown by the catalyst-free, self-organized method based on plasma-assisted molecular-beam epitaxy are shown to behave as subwavelength optical media with low effective refractive indices. In the reflection spectra measured in the entire visible spectral region, strong reflectivity modulations are observed for all nanorod arrays, which are attributed to the effects of Fabry-Pérot microcavities formed within the nanorod arrays by the optically flat air/nanorods and nanorods/substrate interfaces. By analyzing the reflectivity interference fringes, we can quantitatively determine the refractive indices of GaN nanorod arrays as functions of light wavelength. We also propose a model for understanding the optical properties of GaN nanorod arrays in the transparent region. Using this model, good numerical fitting can be achieved for the reflectivity spectra.

© 2008 Optical Society of America

OCIS Codes
(160.5320) Materials : Photorefractive materials
(160.6000) Materials : Semiconductor materials
(300.6550) Spectroscopy : Spectroscopy, visible
(260.2065) Physical optics : Effective medium theory
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: March 10, 2008
Revised Manuscript: May 1, 2008
Manuscript Accepted: May 1, 2008
Published: May 20, 2008

Citation
Hung-Ying Chen, Hon-Way Lin, Chen-Ying Wu, Wei-Chun Chen, Jyh-Shin Chen, and Shangjr Gwo, "Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region," Opt. Express 16, 8106-8116 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-8106


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. B. Clapham and M. C. Hutley, "Reduction of lens reflexion by the �??moth eye�?? principle," Nature 244, 281�??282 (1973). [CrossRef]
  2. S. J. Wilson and M. C. Hutley, "The optical properties of �??moth eye�?? antireflection surfaces," Opt. Acta 29, 993�??1009 (1982). [CrossRef]
  3. M. Srinivasarao, "Nano-optics in the biological world: Beetles, butterflies, birds, and moths," Chem. Rev. 99, 1935�??1961 (1999). [CrossRef]
  4. M. E. Motamedi, W. H. Southwell, and W. J. Gunning, "Antireflection surfaces in silicon using binary optics technique," Appl. Opt. 31, 4371�??4376 (1992). [CrossRef] [PubMed]
  5. P. Lalanne and G. M. Morris, "Antireflection behavior of silicon subwavelength periodic structures for visible light," Nanotechnology 8, 53�??56 (1997). [CrossRef]
  6. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, "100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask," Appl. Phys. Lett. 78, 142�??143 (2001). [CrossRef]
  7. D. E. Aspnes, "Optical properties of thin-films," Thin Solid Films 89, 249�??262 (1982). [CrossRef]
  8. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity." Phys. Rev. Lett. 84, 4184�??4187 (2000). [CrossRef] [PubMed]
  9. D. R. Smith, J. B Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788�??792 (2004). [CrossRef] [PubMed]
  10. J.-Q. Xi, J. K. Kim, and E. F. Schubert, "Silica nanorod-array films with very low refractive indices," Nano Lett. 5, 1385�??1387 (2005). [CrossRef] [PubMed]
  11. J.-Q. Xi, J. K. Kim, E. F. Schubert, D. Ye, T.-M. Lu, and S.-Y. Lin, "Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods," Opt. Lett. 31, 601�??603 (2006). [CrossRef] [PubMed]
  12. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nat. Photonics 1, 176�??179 (2007).
  13. C.-H. Hsu, H.-C. Lo, C.-F. Chen, C. T. Wu, J.-S. Hwang, D. Das, J. Tsai, L.-C. Chen, and K.-H. Chen, "Generally applicable self-masked dry etching technique for nanotip array fabrication," Nano Lett. 4, 471�??475 (2004). [CrossRef]
  14. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nat. Nanotechnol. 2, 770�??774 (2007). [CrossRef]
  15. H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, "Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si (111) by plasma-assisted molecular-beam epitaxy," Appl. Phys. Lett. 89, 243105 (2006), and references therein. [CrossRef]
  16. E. F. Schubert, Light-Emitting Diodes, 2nd Edition (Cambridge University Press, Cambridge, 2006). [CrossRef]
  17. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, "Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening," Appl. Phys. Lett. 84, 855�??857 (2004). [CrossRef]
  18. T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, "III-nitride blue and ultraviolet photonic crystal light emitting diodes," Appl. Phys. Lett. 84, 466�??468 (2004). [CrossRef]
  19. J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, "InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures," Appl. Phys. Lett. 84, 3885�??3887 (2004). [CrossRef]
  20. A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, "Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution," Appl. Phys. Lett. 88, 061124 (2006). [CrossRef]
  21. J. Y. Kim, T. Gessmann, E. F. Schubert, J.-Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, "GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer," Appl. Phys. Lett. 88, 013501 (2006). [CrossRef]
  22. J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. M. Mackie, and H. Shen, "Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency," Appl. Phys. Lett. 90, 203515 (2007). [CrossRef]
  23. H.-M. Kim, T. W. Kang, and K. S. Chung, "Nanoscale ultraviolet-light-emitting diodes using wide-bandgap gallium nitride nanorods," Adv. Mater. 15, 567�??569 (2003). [CrossRef]
  24. H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, "High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays," Nano Lett. 4, 1059�??1062 (2004). [CrossRef]
  25. A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, "InGaN/GaN multiple quantum disk nanocolumn light-emitting diodes grown on (111) Si substrate," Jpn. J. Appl. Phys. 43, L1524�??L1526 (2004). [CrossRef]
  26. A. Kikuchi, M. Tada, K. Miwa, and K. Kishino, "Growth and characterization of InGaN/GaN nanocolumn LED," Proc. SPIE 6129, 612905 (2006). [CrossRef]
  27. K. Kishino, A. Kikuchi, H. Sekiguchi, and S. Ishizawa, "InGaN/GaN nanocolumn LEDs emitting from blue to red," Proc. SPIE 6473, 64730T (2007). [CrossRef]
  28. G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, "Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78�??4.77 eV) by spectroscopic ellipsometry and the optical transmission method," Appl. Phys. Lett.70 3209�??3211 (1997); the refractive index n was found to follow the Sellmeir-type dispersion relationship n2(λ) = 2.272 + 304.72/(λ2 �?? 294.02) with the incident photon energy below the fundamental band edge of wurtzite GaN. [CrossRef]
  29. T. Kawashima, H. Yoshikawa, S. Adachi, S. Fuke, and K. Ohtsuka, "Optical properties of hexagonal GaN," J. Appl. Phys. 82, 3528�??3535 (1997). [CrossRef]
  30. H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, New York, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited