OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 11 — May. 26, 2008
  • pp: 8150–8173

Estimating random signal parameters from noisy images with nuisance parameters: linear and scanning-linear methods

Meredith Kathryn Whitaker, Eric Clarkson, and Harrison H. Barrett  »View Author Affiliations

Optics Express, Vol. 16, Issue 11, pp. 8150-8173 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2410 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In a pure estimation task, an object of interest is known to be present, and we wish to determine numerical values for parameters that describe the object. This paper compares the theoretical framework, implementation method, and performance of two estimation procedures. We examined the performance of these estimators for tasks such as estimating signal location, signal volume, signal amplitude, or any combination of these parameters. The signal is embedded in a random background to simulate the effect of nuisance parameters. First, we explore the classical Wiener estimator, which operates linearly on the data and minimizes the ensemble mean-squared error. The results of our performance tests indicate that the Wiener estimator can estimate amplitude and shape once a signal has been located, but is fundamentally unable to locate a signal regardless of the quality of the image. Given these new results on the fundamental limitations of Wiener estimation, we extend our methods to include more complex data processing. We introduce and evaluate a scanning-linear estimator that performs impressively for location estimation. The scanning action of the estimator refers to seeking a solution that maximizes a linear metric, thereby requiring a global-extremum search. The linear metric to be optimized can be derived as a special case of maximum a posteriori (MAP) estimation when the likelihood is Gaussian and a slowly varying covariance approximation is made.

© 2008 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(110.3000) Imaging systems : Image quality assessment
(110.4280) Imaging systems : Noise in imaging systems

ToC Category:
Image Processing

Original Manuscript: March 28, 2008
Revised Manuscript: May 15, 2008
Manuscript Accepted: May 17, 2008
Published: May 20, 2008

Meredith Kathryn Whitaker, Eric Clarkson, and Harrison H. Barrett, "Estimating random signal parameters from noisy images with nuisance parameters: linear and scanning-linear methods," Opt. Express 16, 8150-8173 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley-Interscience, 2004).
  2. S. C. Moore, M. F. Kijewski, and G. El Fakhri, "Collimator Optimization for Detection and Quantitation Tasks: Application to Gallium-67 Imaging," IEEE Trans. Med. Imaging 24, 1347-1356 (2005). [CrossRef] [PubMed]
  3. G. El Fakhri, S. C. Moore, and M. F. Kijewski, "Optimization of Ga-67 imaging for detection and estimation tasks: Dependence of imaging performance on spectral acquisition parameters," Med. Phys. 29, 1859-1866 (2002). [CrossRef] [PubMed]
  4. M. A. Kupinski, E. Clarkson, K. Gross, and J. W. Hoppin, "Optimizing imaging hardware for estimation tasks," Proc. SPIE 5034, 309-313 (2003). [CrossRef]
  5. H. H. Barrett, "Objective assessment of image quality: effects of quantum noise and object variability," J. Opt. Soc. Am. A 7, 1266-1278 (1990). [CrossRef] [PubMed]
  6. H. H. Barrett, K. J. Myers, N. Devaney, and J. C. Dainty, "Objective Assessment of Image Quality: IV. Application to Adaptive Optics," J. Opt. Soc. Am. A 23, 3080-3105 (2006). [CrossRef]
  7. Y. C. Eldar, "Comparing between estimation approaches: admissible and dominating linear estimators," IEEE Trans. Signal Process. 54, 1689-1702 (2006). [CrossRef]
  8. C. Caiafa, A. Proto, and E. Kuruoglu, "Long correlation Gaussian random fields: Parameter estimation and noise reduction," Digital Signal Processing 17, 819-835 (2007). [CrossRef]
  9. A. B. Hamza, H. Krim, and G. Unal, "Unifying probabilistic and variational estimation," IEEE Signal Process Mag. 19, 37-47 (2002). [CrossRef]
  10. R. E. Greenblatt, A. Ossadtchi, and M. E. Pflieger, "Local linear estimators for the bioelectromagnetic inverse problem," IEEE Trans. Signal Process. 53, 3403-3412 (2005). [CrossRef]
  11. F. O. Bochud, J.-F. Valley, and F. R. Verdun, "Estimation of the noisy component of anatomical backgrounds," Med. Phys. 26, 1365-1370 (1999). [CrossRef] [PubMed]
  12. S. P. Muller, M. F. Kijewski, S. C. Moore, and B. L. Holman, "Maximum-likelihood Estimation: A Mathematical Model for Quantitation in Nuclear Medicine," J. Nucl. Med. 31, 1693-1701 (1989).
  13. S. P. Muller, C. K. Abbey, F. J. Rybicki, S. C. Moore, and M. F. Kijewski, "Measures of performance in nonlinear estimation tasks: prediction of estimation performance at low signal-to-noise ratio," Phys. Med. Biol. 50, 3697-3715 (2005). [CrossRef]
  14. J. Shao, Mathematical Statistics (Springer, 1999).
  15. M. Kupinski, J. W. Hoppin, E. Clarkson, and H. H. Barrett, "Ideal-observer computation in medical imaging with use of Markov-chain Monte Carlo techniques," J. Opt. Soc. Am. A 20, 430-438 (2003). [CrossRef]
  16. N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series with Engineering Applications (The MIT Press, 1949). [PubMed]
  17. J. L. Melsa and D. L. Cohn, Decision and Estimation Theory (McGraw-Hill, 1978).
  18. J. P. Rolland and H. H. Barrett, "Effect of random background inhomogeneity on observer detection performance," J. Opt. Soc. Am. A 9, 649-658 (1992). [CrossRef] [PubMed]
  19. H. H. Barrett, K. J. Myers, B. Gallas, E. Clarkson, and H. Zhang, "Megalopinakophobia: Its Symptoms and Cures," Proc. SPIE 4320, 299-307 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited