OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 11 — May. 26, 2008
  • pp: 8198–8212

Selective optical-optical switching for planar plasmonic waveguides and nodes

Michael C. Quong and Abdulhakem Y. Elezzabi  »View Author Affiliations


Optics Express, Vol. 16, Issue 11, pp. 8198-8212 (2008)
http://dx.doi.org/10.1364/OE.16.008198


View Full Text Article

Enhanced HTML    Acrobat PDF (595 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two nodes are studied as means to perform selective optical-optical switching of four planar thin surface plasmon waveguides by interfering TEM10, TEM01, and TEM00 light beams incident upon a node. One node uses a flat-apex pyramidal reflector to reflect the incident light toward the waveguides’ ends. An alternative node is a simple square aperture, which couples surface plasmons through light diffraction at the aperture’s edges. Numerical calculations predict switching contrast, coupling efficiencies, and cross-talk between waveguides. Individually turned-off waveguides are shown to have their coupled surface plasmons attenuated by at least -10 dB and up to -21 dB.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.2790) Thin films : Guided waves

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 26, 2008
Revised Manuscript: March 27, 2008
Manuscript Accepted: April 13, 2008
Published: May 21, 2008

Citation
Michael C. Quong and Abdulhakem Y. Elezzabi, "Selective optical-optical switching for planar plasmonic waveguides and nodes," Opt. Express 16, 8198-8212 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-8198


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, "40 Gbit/s light signal transmission in long-range surface plasmon waveguides," Appl. Phys. Lett. 91, 171117 (2007). [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  3. N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005). [CrossRef] [PubMed]
  4. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006). [CrossRef]
  5. K. J. Chau, M. Johnson, and A. Y. Elezzabi, "Electron-spin-dependent terahertz light transport in spintronic-plasmonic media," Phys. Rev. Lett. 98, 133901 (2007). [CrossRef] [PubMed]
  6. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  7. G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, "Excitation of surface polaritons by end-fire coupling," Opt. Lett. 8, 386-388 (1983), http://www.opticsinfobase.org/abstract.cfm?URI=ol-8-7-386. [CrossRef] [PubMed]
  8. Z. Sun and D. Zeng, "Coupling of surface plasmon waves in metal/dielectric gap waveguides and single interface waveguides," J. Opt. Soc. Am. B 24, 2883-2887 (2007), http://www.opticsinfobase.org.login.ezproxy.library.ualberta.ca/abstract.cfm?URI=josab-24-11-2883. [CrossRef]
  9. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, "Experimental observation of plasmon polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-11-844. [CrossRef]
  10. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, "Passive integrated optics elements based on long-range surface plasmon polaritons," J. Lightwave Technol. 24, 477-494 (2006). [CrossRef]
  11. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, "Long-range surface plasmon polariton nanowire waveguides for device applications," Opt. Express 14, 314-319 (2006). [CrossRef] [PubMed]
  12. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Ma, 1995).
  13. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  14. L. A. Sweatlock, S. A. Meier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly-coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005). [CrossRef]
  15. A. Dechant and A. Y. Elezzabi, "Femtosecond optical pulse propagation in subwavelength metallic slits," Appl. Phys. Lett. 84, 4678-4680 (2004). [CrossRef]
  16. J. R. Sambles, G. W. Bradberry, and F. Yang, "Optical excitation of surface plasmons: an introduction," Contemporary Phys. 32, 173-183 (1991). [CrossRef]
  17. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000). [CrossRef]
  18. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding," Phys. Rev. B 76, 035434 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited