OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8427–8432

Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber

Markus Hautakorpi, Maija Mattinen, and Hanne Ludvigsen  »View Author Affiliations

Optics Express, Vol. 16, Issue 12, pp. 8427-8432 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (492 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel surface-plasmon-resonance sensor design based on coating the holes of a three-hole microstructured optical fiber with a low-index dielectric layer on top of which a gold layer is deposited. The use of all three fiber holes and their relatively large size should facilitate the fabrication of the inclusions and the infiltration of the analyte. Our numerical results indicate that the optical loss of the Gaussian guided mode can be made very small by tuning the thickness of the dielectric layer and that the refractive-index resolution for aqueous analytes is 1×10-4.

© 2008 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2340) Fiber optics and optical communications : Fiber optics components
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 11, 2008
Revised Manuscript: April 23, 2008
Manuscript Accepted: May 16, 2008
Published: May 23, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Markus Hautakorpi, Maija Mattinen, and Hanne Ludvigsen, "Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber," Opt. Express 16, 8427-8432 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006). [CrossRef]
  2. X. Zhang, R. Wang, F. Cox, B. T. Kuhlmey, and M. C. J. Large, "Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers," Opt. Express 15, 16270-16278 (2006). [CrossRef]
  3. A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, "Surface-enhanced Raman scattering using microstructured optical fiber substrates," Adv. Funct. Mater. 17, 2024-2030 (2007). [CrossRef]
  4. B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, "Multipole analysis of photonic crystal fibers with coated inclusions," Opt. Express 14, 10851-10864 (2006). [CrossRef] [PubMed]
  5. A. Hassani and M. Skorobogatiy, "Design of the microstructured optical fiber-based surface plasmon resonance sensor with enhanced microfluidics," Opt. Express 14, 11616-11621 (2006). [CrossRef] [PubMed]
  6. A. Hassani and M. Skorobogatiy, "Design criteria for microstructured-optical-fiber-based surface-plasmonresonance sensors," J. Opt. Soc. Am. B 24, 1423-1429 (2007). [CrossRef]
  7. B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, "Photonic bandgap fiber-based surface plasmon resonance sensors," Opt. Express 15, 11413-11426 (2007). [CrossRef] [PubMed]
  8. Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, "Detection of quantum-dot labeled proteins using soft-glass microstructured optical fibers," Opt. Express 15, 17819-17826 (2007). [CrossRef] [PubMed]
  9. S. Afshar V., S. C. Warren-Smith, and T. M. Monro, "Enhancement of fluorescence-based sensing using microstructured optical fibers," Opt. Express 15, 17891-17901 (2007). [CrossRef]
  10. C. M. B. Cordeiro, M. A. R. Franco, C. J. S. Matos, F. Sircilli, V. A. Serr??ao, and C. H. Brito Cruz, "Single-designparameter microstructured optical fiber for chromatic dispersion tailoring and evanescent field enhancement," Opt. Lett. 32, 3324-3326 (2007). [CrossRef] [PubMed]
  11. M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. -L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, "Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer," Opt. Lett. 32, 2390-2392 (2007). [CrossRef]
  12. http://www.comsol.com/
  13. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, San Diego, Calif., 1998).
  14. H. P. Uranus, "A simple and intuitive procedure for evaluating mode degeneracy in photonic crystal fibers," Am. J. Phys. 74, 211-217 (2006). [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, Calif., 2001).
  16. S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, "Defect and lattice structure for air-silica index-guiding holey fibers," Opt. Lett. 31, 164-166 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited