OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8519–8531

Detection efficiency in total internal reflection fluorescence microscopy

Marcel Leutenegger and Theo Lasser  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 8519-8531 (2008)
http://dx.doi.org/10.1364/OE.16.008519


View Full Text Article

Enhanced HTML    Acrobat PDF (339 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a rapid and flexible framework for the accurate calculation of the detection efficiency of fluorescence emission in isotropic media as well as in the vicinity of dielectric or metallic interfaces. The framework accounts for the dipole characteristics of the emitted fluorescence and yields the absolute detection efficiency by taking into account the total power radiated by the fluorophore. This analysis proved to be useful for quantitative measurements, i.e. the fluorescence detection at a glass–water interface for total internal reflection fluorescence microscopy in an epi- and a trans-illumination configuration.

© 2008 Optical Society of America

OCIS Codes
(110.2990) Imaging systems : Image formation theory
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(240.6490) Optics at surfaces : Spectroscopy, surface

ToC Category:
Microscopy

History
Original Manuscript: March 28, 2008
Revised Manuscript: May 9, 2008
Manuscript Accepted: May 23, 2008
Published: May 27, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Marcel Leutenegger and Theo Lasser, "Detection efficiency in total internal reflection fluorescence microscopy," Opt. Express 16, 8519-8531 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8519


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Magde, W.W. Webb, E. Elson, "Thermodynamic fluctuations in a reacting system - measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29,705 (1972). [CrossRef]
  2. R. Rigler, E. S. Elson, Fluorescence Correlation Spectroscopy: Theory and Applications, Springer Ser. Chem. Phys. 65, ISBN 3-540-67433-0 (2001).
  3. P. Kask, K. Palo, D. Ullmann, K. Gall, "Fluorescence-intensity distribution analysis and its application in biomolecular detection technology," PNAS 96, 13756-13761 (1999). [CrossRef] [PubMed]
  4. Y. Chen, J. D. Muller, P. T. C. So, and E. Gratton, "The Photon Counting Histogram in Fluorescence Fluctuation Spectroscopy," Biophys. J. 77, 553-567 (1999). [CrossRef] [PubMed]
  5. C. Eggeling, P. Kask, D. Winkler, S. Jager, "Rapid Analysis of Forster Resonance Energy Transfer by Two-Color Global Fluorescence Correlation Spectroscopy: Trypsin Proteinase Reaction," Biophys. J. 89, 605-618 (2005). [CrossRef] [PubMed]
  6. J. Enderlein, I. Gregor, D. Patra, T. Dertinger, U. B. Kaupp, "Performance of Fluorescence Correlation Spectroscopy for Measuring Diffusion and Concentration," ChemPhysChem 6, 2324-2336 (2005). [CrossRef] [PubMed]
  7. P. Torok, P. D. Higdon, and T. Wilson, "Theory for confocal and conventional microscopes imaging small dielectric scatterers," J. Mod. Opt. 45, 1681-1698 (1998). [CrossRef]
  8. P. D. Higdon, P. Torok, and T. Wilson, "Imaging properties of high aperture multiphoton fluorescence scanning optical microscopes," J. Microsc. 193, 127-141 (1999). [CrossRef]
  9. P. Torok, "Propagation of electromagnetic dipole waves through dielectric interfaces," Opt. Lett. 25, 1463-1465 (2000). [CrossRef]
  10. J. Enderlein, M. Bohmer, "Influence of interfacedipole interactions on the efficiency of fluorescence light collection near surfaces," Opt. Lett. 28, 941-943 (2003). [CrossRef] [PubMed]
  11. P. Debye, "Das Verhalten von Lichtwellen in der N¨ahe eines Brennpunktes oder einer Brennlinie," Ann. Phys. 30, 755-776 (1909). [CrossRef]
  12. E. Wolf, "Electromagnetic diffraction in optical systems, I. An integral representation of the image field," Proc. R. Soc. London Ser. A 253, 349-357 (1959). [CrossRef]
  13. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959). [CrossRef]
  14. M. Leutenegger, R. Rao, R. A. Leitgeb, and T. Lasser, "Fast focus field calculations," Opt. Express 14, 11277-11291 (2006). [CrossRef] [PubMed]
  15. The subscript refers to the wavelength used for calculating the corresponding quantity.
  16. B. Valeur, Molecular fluorescence: principles and applications, (Wiley-VCH, 2002) ISBN 3-527-29919-X .
  17. J. Widengren and P. Schwille, "Characterization of Photoinduced Isomerization and Back-Isomerization of the Cyanine Dye Cy5 by Fluorescence Correlation Spectroscopy," J. Phys. Chem. A 104, 6416-6428 (2000). [CrossRef]
  18. C. Eggeling, A. Volkmer, C. A. M. Seidel, "Molecular Photobleaching Kinetics of Rhodamine 6G by One- and Two-Photon Induced Confocal Fluorescence Microscopy," Chem. Phys. Chem. 6, 791-804 (2005). [CrossRef] [PubMed]
  19. W. Lukosz and R. E. Kunz, "Light-emission by magnetic and electric dipoles close to a plane interface: 1. Total radiated power," J. Opt. Soc. Am. 67, 1607-1615 (1977). [CrossRef]
  20. W. Lukosz, "Light-emission by magnetic and electric dipoles close to a plane dielectric interface: 3. Radiationpatterns of dipoles with arbitrary orientation," J. Opt. Soc. Am. 69, 1495-1503 (1979). [CrossRef]
  21. T. P. Burghardt and N. L. Thompson, "Effect of planar dielectric interfaces on fluorescence emission and detection. Evanescent excitation with high-aperture collection," Biophys. J. 46, 729-737 (1984). [CrossRef] [PubMed]
  22. E. H. Hellen and D. Axelrod, "Fluorescence emission at dielectric and metal-film interfaces," J. Opt. Soc. Am. B 4, 337-350 (1987). [CrossRef]
  23. L. Novotny, "Allowed and forbidden light in near-field optics. II. Interacting dipolar particles," J. Opt. Soc. Am. A 14, 105-113 (1997). [CrossRef]
  24. J. Mertz, "Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description," J. Opt. Soc. Am. B 17, 1906-1913 (2000). [CrossRef]
  25. G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984). [CrossRef]
  26. J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855-8865 (2005). [CrossRef] [PubMed]
  27. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005). [CrossRef] [PubMed]
  28. E. H. Hellen and D. Axelrod, "Fluorescence emission at dielectric and metal-film interfaces," J. Opt. Soc. Am. B 4, 337-350 (1987). [CrossRef]
  29. J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D: Appl. Phys. 36, R240-R249 (2003). [CrossRef]
  30. For single photon detectors SPCM-AQR-xx by PerkinElmer, qd ? 55% at ?fl = 525nm, respectively qd? 45% for the PDM 50CT by Micro Photon Devices.
  31. Typical values: ? 85% transmission through the dichroic mirror and ? 90% transmission through the emission bandpass filter with a bandwidth covering ? 60% of the fluorescence spectrum, that is T fl? 45% in total.
  32. R. J. Potton, "Reciprocity in optics," Rep. Prog. Phys. 67, 717-754 (2004). [CrossRef]
  33. J.-L. Kaiser, E. Quertemont, and R. Chevallier, "Light propagation in the pseudo-paraxial Fresnel approximation," Opt. Commun. 233, 261-269 (2004). [CrossRef]
  34. A. E. Siegman, Lasers, (Oxford Univ. Press,1986) ISBN 0-19-855713-2.
  35. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, "Fast algorithms for free-space diffraction patterns calculation," Opt. Commun. 164, 233-245 (1999). [CrossRef]
  36. The Royal microscope standard limits the clear objective aperture to less than 16mm. The shortest commercial tube length is 164mm (Carl Zeiss), which yields an image NA < 8mm/164mm = 0.049.
  37. According to previous notes qdT fl? 23% typically.
  38. A. M. Lieto, R. C. Cush, and N. L. Thompson, "Ligand-Receptor Kinetics Measured by Total Internal Reflection with Fluorescence Correlation Spectroscopy," Biophys. J. 85, 3294-3302 (2003). [CrossRef] [PubMed]
  39. M. Leutenegger, H. Blom, J. Widengren, C. Eggeling, M. Gosch, R. A. Leitgeb, T. Lasser, "Dual-color total internal reflection fluorescence cross-correlation spectroscopy," J. Biomed. Opt. 11, 040502 (2006). [CrossRef] [PubMed]
  40. K. Hassler, M. Leutenegger, P. Rigler, R. Rao, R. Rigler, M. Gosch, T. Lasser, "Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule," Opt. Express 13, 7415-7423 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited