OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8792–8799

Electromagnetic modeling of active silicon nanocrystal waveguides

Brandon Redding, Shouyuan Shi, Tim Creazzo, and Dennis W. Prather  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 8792-8799 (2008)
http://dx.doi.org/10.1364/OE.16.008792


View Full Text Article

Enhanced HTML    Acrobat PDF (1072 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we propose an electromagnetic analysis of active silicon nano-crystal (Si-nc) waveguide devices. To account for the nonlinearity in the active medium we introduce a four level rate equation model whose parameters are based on experimentally reported material properties. The electromagnetic polarization serves to couple the quantum mechanical and electromagnetic behavior within the ADE-FDTD scheme. The developed modeling tool is used to simulate waveguide amplifiers, enhanced spontaneous emission microcavities, and the temporal lasing dynamics of active Si-nc based devices.

© 2008 Optical Society of America

OCIS Codes
(250.4480) Optoelectronics : Optical amplifiers
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Optoelectronics

History
Original Manuscript: February 11, 2008
Revised Manuscript: April 29, 2008
Manuscript Accepted: May 30, 2008
Published: June 2, 2008

Citation
Brandon Redding, Shouyuan Shi, Tim Creazzo, and Dennis W. Prather, "Electromagnetic modeling of active silicon nanocrystal waveguides," Opt. Express 16, 8792-8799 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8792


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Pavesi, "Will silicon be the photonic material of the third millenium?," J. Phys. Condens Matter 15, R1169-R1196 (2003). [CrossRef]
  2. B. Jalali and S. Fathpour, "Silicon photonics," J. Lightwave Technol.,  24, 4600-4615 (2006). [CrossRef]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000). [CrossRef] [PubMed]
  4. J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, "Stimulated emission in nanocrystalline silicon superlattices," Appl. Phys. Lett. 83, 5479-5481 (2003). [CrossRef]
  5. A. Fojtik, J. Valenta, I. Pelant, M. Kalal, and P. Fiala, "On the road to silicon-nanoparticle laser," J. Mater. Process Technol. 181, 88-92 (2007). [CrossRef]
  6. D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, "Quantum confined luminescence in Si/SiO2 superlattices," Phys. Rev. Lett. 76, 539-541 (1996). [CrossRef] [PubMed]
  7. V. Ovchinnikov, A. Malinin, V. Sokolov, O. Kilpela, and J. Sinkkonen, "Photo and electroluminescence from PECVD grown a-Si : H/SiO2 multilayers," Opt. Mater. 17, 103-106 (2001). [CrossRef]
  8. T. Creazzo, B. Redding, T. Hodson, D. W. Prather, "Fabrication and characterization of silicon/silicon dioxide super lattices for silicon based light emitting devices," Proc. SPIE 6645 (2007). [CrossRef]
  9. A. S. Nagra and R. A. York, "FDTD analysis of wave propagation in nonlinear absorbing and gain media," IEEE Transactions on Antennas and Propagation,  46, 334-340 (1998).
  10. S. Shi and D. W. Prather, "Lasing dynamics of a silicon photonic crystal microcavity," Opt. Express 15, 10294-10302 (2007). [CrossRef] [PubMed]
  11. S. Y. Shi, G. Jin, and D. W. Prather, "Electromagnetic simulation of quantum well structures," Opt. Express 14, 2459-2472 (2006). [CrossRef] [PubMed]
  12. S. H. Chang and A. Taflove, "Finite-difference time-domain model of lasing action in a four-level two-electron atomic system," Opt. Express 12, 3827-3833 (2004). [CrossRef] [PubMed]
  13. S. Shi, T. Creazzo, B. Redding, D. W. Prather, Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19711 are preparing a manuscript to be called "Simulation of Light Amplification and Enhanced Spontaneous Emission in Silicon Nanocrystals."
  14. L. Dal Negro, M. Cazzanelli, N. Daldosso, Z. Gaburro, L. Pavesi, F. Priolo, D. Pacifici, G. Franzo, and F. Iacona, "Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals," Physica E-Low-Dimensional Systems & Nanostructures 16, 297-308 (2003). [CrossRef]
  15. A. H. Taflove, S. C., Computational Electrodynamics: the finite-difference time-domain method (Artech House Publishers; 3rd edition, 2005).
  16. L. G. Pavesi, S. Dal Negro, L., Towards the First Silicon Laser (Kluwer Academic Publishers, 2002).
  17. D. Kovalev, H. Heckler, G. Polisski, and F. Koch, "Optical Properties of si nanocrystals," Phys. Status Solidi B 215, 871 (1999). [CrossRef]
  18. A. Belarouci and F. Gourbilleau, "Microcavity enhanced spontaneous emission from silicon nanocrystals," J. Appl. Phys. 101, 73108 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited