OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8896–8901

Influence of substrates in ZnO devices on the surface plasmon enhanced light emission

Peihong Cheng, Dongsheng Li, and Deren Yang  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 8896-8901 (2008)
http://dx.doi.org/10.1364/OE.16.008896


View Full Text Article

Enhanced HTML    Acrobat PDF (238 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The substrates in emitting structure were found to have an influence on the surface plasmon mediated light emission of ZnO films. Ag film mediated photoluminescence was quenched for ZnO on silicon substrate but enhanced for ZnO on quartz or sapphire substrate. Through a theoretical simulation, the quenching for ZnO on silicon substrate is ascribed to the power lost to the substrate mode nonradiatively at the expense of the power coupled to the SP mode. The substrate with a high refractive index may capture and dissipate the emitting power which limits the efficiency of SP mediated light extraction. Therefore, a proper arrangement of the refractive index of the substrate and emitting layers in the device structure is decisive for the SP coupled light emission enhancement. Base on the theoretical analysis, a four-layered structure was advanced to recover SP mediated emission enhancement from ZnO film on silicon substrate.

© 2008 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 23, 2008
Revised Manuscript: May 23, 2008
Manuscript Accepted: May 26, 2008
Published: June 2, 2008

Citation
Peihong Cheng, Dongsheng Li, and Deren Yang, "Influence of substrates in ZnO devices on the surface plasmon enhanced light emission," Opt. Express 16, 8896-8901 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8896


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Chance, A. Prock, and R. Silbey, "Lifetime of an emitting molecule near a partially reflecting surface," J.Chem. Phys. 60, 2744-2748 (1974). [CrossRef]
  2. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and Axel Scherer,"Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004). [CrossRef] [PubMed]
  3. C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, "Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes," Appl. Phys. Lett. 88,161105-1-3 (2006). [CrossRef]
  4. P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, "Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film," Appl. Phys. Lett. 92,041119-1-3 (2008). [CrossRef]
  5. J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, "Enhance radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters," Nano Lett. 5, 1768-1773 (2005). [CrossRef] [PubMed]
  6. D. Y. Lei, J. Li, and H. C. Ong, "Tunable surface plasmon mediated emission from semiconductors by using metal alloys," Appl. Phys. Lett. 91, 021112-1-3 (2007). [CrossRef]
  7. T. D. Neal, K. Okamoto, and A. Scherer, "Surface plasmon enhanced emission from dye doped polymer layers," Opt. Express. 13, 5522-5528 (2005). [CrossRef] [PubMed]
  8. S. Wedge and W. L. Barnes, "Surface plasmon-polariton mediated light emission through thin metal films," Opt. Express. 12, 3673-3685 (2004). [CrossRef] [PubMed]
  9. W. L. Barnes and P. T. Worthing, "Spontaneous emission and metal-clad microcavities," Opt. Commun. 162, 16-20 (1999). [CrossRef]
  10. C.-Y. Chen, D.-M. Yeh, Y.-C. Lu, and C. C. Yang, "Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure," Appl. Phys. Lett. 89, 203113-1-3 (2006). [CrossRef]
  11. R. R. Chance, A. Prock, and R. Silbey, "Comments on the classical theory of energy transfer," J. Chem. Phys. 62, 2245-2253 (1975). [CrossRef]
  12. K. G. Sullivan and D. G. Hall, "Enhancement and inhibition of electromagnetic radiation in plane-layered media," J. Opt. Soc. Am. B 14, 1149-1159 (1997). [CrossRef]
  13. S. Kawabata, K. Ishihara, Y. Hoshi, and T. Fukazawa, "Observation of silver film growth using an in situ ultra-high vacuum spectroscopic ellipsometer," Thin Solid Film 313-314, 516-521 (1998). [CrossRef]
  14. EdwardD.  Palik, Handbook of optical constant of solid (Academic, 1985)
  15. B. J. Soller and D. G. Hall, "Energy transfer at optical frequencies to silicon-based waveguiding structures," J. Opt. Soc. Am. A 18, 2577-2584 (2001). [CrossRef]
  16. T. Nakamura, M. Fujii, K. Imakita, and S. Hayashi, "Modification of energy transfer from Si nanocrystals to Er3+ near a Au thin film," Phys. Rev. B 72, 235412-1-6 (2005) [CrossRef]
  17. R. M. Amos and W. L. Barnes, "Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror," Phys. Rev. B 55, 7249-7254 (1997). [CrossRef]
  18. <jrn>. J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, "Excitation of surface plasmons at SiO2/Ag interface by silicon quantum dots:experiment and theory, " Phys. Rev. B 73, 075317-1-8 (2006).</jrn> [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited