OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 9034–9045

Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing

S. C. Warren-Smith, S. Afshar V., and T. M. Monro  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 9034-9045 (2008)
http://dx.doi.org/10.1364/OE.16.009034


View Full Text Article

Enhanced HTML    Acrobat PDF (459 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The absorption and fluorescence sensing properties of liquid-immersed exposed-core microstructured optical fibers are explored for the regime where these structures act as supported nanowires with direct access to the sensing environment. For absorption-based sensing we demonstrate that the amount of power propagating in the sensing region of the exposed-core fiber can compete with that of traditional MOFs. For fluorescence-based sensing, we see that in addition to the enhanced fluorescence capture efficiency already predicted for small-core, high refractive index contrast fibers, an improvement of up to 29% can be gained by using liquid-immersed exposed-core fibers. Additionally, calculation of the losses associated with interfaces between filled and unfilled sections predict significant benefit in using high refractive index substrate glasses for liquid-immersed exposed-core fiber sensing. This work demonstrates that, for fiber dimensions of interest, the exposed-core fiber is an attractive new sensor technology.

© 2008 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(300.1030) Spectroscopy : Absorption
(300.2530) Spectroscopy : Fluorescence, laser-induced
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 11, 2008
Revised Manuscript: May 29, 2008
Manuscript Accepted: May 29, 2008
Published: June 4, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Citation
S. C. Warren-Smith, S. Afshar V., and T. M. Monro, "Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing," Opt. Express 16, 9034-9045 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-9034


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Stewart and B. Culshaw, "Optical waveguide modelling and design for evanescent field chemical sensors," Opt. Quantum Electron. 26, s249-s259 (1994). [CrossRef]
  2. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005). [CrossRef] [PubMed]
  3. L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006). [CrossRef] [PubMed]
  4. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, "Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006). [CrossRef] [PubMed]
  5. Y. Zhu, H. Du, and R. Bise, "Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing," Opt. Express 14, 3541-3546 (2006). [CrossRef] [PubMed]
  6. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sorensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-7 (2004). [CrossRef] [PubMed]
  7. Y. L. Hoo, W. Jin, C. Z. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, "Design and modeling of a photonic crystal fiber gas sensor," Appl. Opt. 42, 3509-3515 (2003). [CrossRef] [PubMed]
  8. C. M. B. Cordeiro, E. M. dos Santos, C. H. Brito Cruz, C. J. de Matos, and D. S. Ferreiia, "Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications," Opt. Express 14, 8403-8412 (2006). [CrossRef] [PubMed]
  9. C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, "Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre," Meas. Sci. Technol. 18, 3075-3081 (2007). [CrossRef]
  10. C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, "Photonic band-gap fiber gas cell fabricated using femtosecond micromachining," Opt. Express 15, 6690-6695 (2007). [CrossRef] [PubMed]
  11. A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, "Micro-channels machined in microstructured optical fibers by femtosecond laser," Opt. Express 15, 8731-8736 (2007). [CrossRef] [PubMed]
  12. F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, "Opening up optical fibres," Opt. Express 15, 11843-11848 (2007). [CrossRef] [PubMed]
  13. T. M. Monro, H. Ebendorff-Heidepriem, Patent Application, ???Fabrication of nanowires??? (PCT/AU2006/00501), October 2005.
  14. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12, 5082-5087 (2004). [CrossRef] [PubMed]
  15. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, "Symmetry and degeneracy in microstructured optical fibers," Opt. Lett. 26, 488-490 (2001). [CrossRef]
  16. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field enhancement within an optical fiber with a subwavelength air core," Nat. Photonics 1, 115-118 (2007). [CrossRef]
  17. N. Ganesh and B. T. Cunningham, "Photonic crystal enhanced fluorescence," in Tech. Digest, (Opt. Soc. Am., 2007) p. CThz5.
  18. J. Lou, L. Tong, and Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005). [CrossRef] [PubMed]
  19. S. Afshar V., S. C. Warren-Smith, and T. M. Monro, "Enhancement of fluorescence-based sensing using microstructured optical fibres," Opt. Express 15, 17891-17901 (2007). [CrossRef]
  20. Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, "Detection of quantum-dot labeled proteins using soft glass microstructured optical fibers," Opt. Express 15, 17819-17826 (2007). [CrossRef] [PubMed]
  21. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1995).
  22. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  23. F. W. D. Rost, Fluorescence Microscopy (Cambridge University Press, 1992).
  24. M. Sumetsky, Y. Dulashko, and A. Hale, "Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer," Opt. Express 12, 3521-3531 (2004). [CrossRef] [PubMed]
  25. J. D. Love and C. Durniak, "Bend loss, tapering, and cladding-mode coupling in single-mode fibers," IEEE Photon. Technol. Lett. 19, 1257-1259 (2007). [CrossRef]
  26. N. H. P. Kao, N. Yang, and J. S. Schoeniger, "Enhancement of evanescent fluorescence from fiber-optic sensors by thin-film sol-gel coatings," J. Opt. Soc. Am. A 15, 2163-2171 (1998). [CrossRef]
  27. W. Henry, "Evanescent field devices: a comparison between tapered optical fibers and polished or D-fibers," Opt. Quantum Electron. 26, s261-s272 (1994). [CrossRef]
  28. A. Cargama, "Modal analysis of coupling problems in optical fibers," IEEE Trans. Microwave Theory Tech. MTT-23, 162-169 (1975). [CrossRef]
  29. C. Vassallo, "On a rigorous calculation of the efficiency for coupling light power into optical waveguides," QE-13, 165-173 (1977).
  30. M. Mostafavi, I. Itoh, and R. Mittra, "Excitation of an optical fiber by a Gaussian beam," Appl. Opt. 14, 2190-2193 (1975). [CrossRef] [PubMed]
  31. J. A. Buck, Fundamentals of Optical Fibers (John Wiley & Sons, 2004).
  32. C. Vassallo, Optical waveguide concepts (Elsevier 1991).
  33. D. Marcuse, "Radiation losses of tapered dielectric slab waveguides," Bell Syst. Tech. J. 49, 273-290 (1970).
  34. P. A. Wallace, M. Campbell, Y. Yang, A. S. Holmes-Smith, and M. Uttamlal, "A distributed optical fibre fluorosensor for pH measurement," J. Lumin. 72-74, 1017-1019 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited