OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 9239–9244

Determination of N2O isotopomers with quantum cascade laser based absorption spectroscopy

Helen Waechter, Joachim Mohn, Bela Tuzson, Lukas Emmenegger, and Markus W. Sigrist  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 9239-9244 (2008)
http://dx.doi.org/10.1364/OE.16.009239


View Full Text Article

Enhanced HTML    Acrobat PDF (427 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an analytical technique based on direct absorption laser spectroscopy for high precision and simultaneous determination of the mixing ratios of the most abundant nitrous oxide isotopic species: 14N15N16O, 15N14N16O and 14N216O. A precision of 0.5‰ was achieved for the site specific isotope ratios of N2O at 90 ppm using an averaging time of 300 s.

© 2008 Optical Society of America

OCIS Codes
(300.6340) Spectroscopy : Spectroscopy, infrared
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Spectroscopy

History
Original Manuscript: April 10, 2008
Revised Manuscript: May 29, 2008
Manuscript Accepted: June 1, 2008
Published: June 6, 2008

Citation
Helen Waechter, Joachim Mohn, Bela Tuzson, Lukas Emmenegger, and Markus W. Sigrist, "Determination of N2O isotopomers with quantum cascade laser based absorption spectroscopy," Opt. Express 16, 9239-9244 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-9239


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. IPCC, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (Cambridge University Press, Cambridge and New York, 2007).
  2. L. Y. Stein and Y. L. Yung, "Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide," Annu. Rev. Earth Planet Sci. 31, 329-356 (2003). [CrossRef]
  3. T. Röckmann, J. Kaiser, C. A. M. Brenninkmeijer, and W. A. Brand, "Gas chromatography / isotope-ratio mass-spectrometry method for high-precision position-dependent 15N and 18O measurement of atmospheric nitrous oxide," Rapid Commun. Mass Spectrom. 17, 1897-1908 (2003). [CrossRef] [PubMed]
  4. S. Toyoda and N. Yoshida, "Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer," Anal. Chem. 71, 4711-4718 (1999). [CrossRef]
  5. M. B. Westley, B. N. Popp, and T. M. Rust, "The calibration of the intramolecular nitrogen isotope distribution in N2O measured by isotope ratio mass spectrometry," Rapid Commun. Mass Spectrom. 21, 391-405 (2007). [CrossRef] [PubMed]
  6. K. Uehara, K. Yamamoto, T. Kikugawa, and N. Yoshida, "Site-selective isotopic ratio measurement of nitrous oxide using 2 ?m diode lasers," Spectrochim. Acta A 59, 957-962 (2003). [CrossRef]
  7. G. Gagliardi, S. Borri, F. Tamassia, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "A frequency-modulated quantum cascade laser for spectroscopy of CH4 and N2O isotopomers," Isotopes Environ. Health Stud. 41, 313-321 (2005). [CrossRef]
  8. H. Waechter and M. W. Sigrist, "Mid-infrared laser spectroscopic determination of isotope ratios of N2O at trace levels using wavelength modulation and balanced path length detection," Appl. Phys. B 87, 539-546 (2007). [CrossRef]
  9. G. Drewitt and J. S. Warland, "Continuous measurements of belowground nitrous oxide concentrations," Soil Sci. Soc. Am. J. 71, 1-7 (2007). [CrossRef]
  10. J. A. Martín, M. Yates, P. ?vila, S. Suárez, and J. Blanco, "N2O formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts," Appl. Catal. B Environ. 70, 330-334 (2007). [CrossRef]
  11. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002). [CrossRef]
  12. B. Tuzson, M. J. Zeeman, M. S. Zahniser, and L. Emmenegger, "Quantum cascade laser based spectrometer for in situ stable carbon dioxide isotope measurements," Infra. Phys. Technol. 51, 198-206 (2008). [CrossRef]
  13. P. Werle, R. Mucke, and F. Slemr, "The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS)," Appl. Phys. B 57, 131-139 (1993). [CrossRef]
  14. L. S. Rothman, D. Jacquemarta, A. Barbe,  et al. "The HITRAN 2004 molecular spectroscopic database," J. Quantum Spectrosc. Radiat. Transfer 96, 139-204 (2005).
  15. B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, "High precision and continuous field measurements of ?13C and ?18O in carbon dioxide with a cryogenic free QCLAS," Appl. Phys. B (to be published).
  16. R. L. Sutka, N. E. Ostrom, P. H. Ostrom, J. A. Breznak, H. Gandhi, A. J. Pitt, and F. Li, "Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances," Appl. Environ. Microbiol. 72, 638-644 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited