OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 13 — Jun. 23, 2008
  • pp: 9443–9458

Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides

Shane M. Eaton, Haibin Zhang, Mi Li Ng, Jianzhao Li, Wei-Jen Chen, Stephen Ho, and Peter R. Herman  »View Author Affiliations


Optics Express, Vol. 16, Issue 13, pp. 9443-9458 (2008)
http://dx.doi.org/10.1364/OE.16.009443


View Full Text Article

Enhanced HTML    Acrobat PDF (1579 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A variable (0.2 to 5 MHz) repetition rate femtosecond laser was applied to delineate the role of thermal diffusion and heat accumulation effects in forming low-loss optical waveguides in borosilicate glass across a broad range of laser exposure conditions. For the first time, a smooth transition from diffusion-only transport at 200-kHz repetition rate to strong heat accumulation effects at 0.5 to 2 MHz was observed and shown to drive significant variations in waveguide morphology, with rapidly increasing waveguide diameter that accurately followed a simple thermal diffusion model over all exposure variables tested. Amongst these strong thermal trends, a common exposure window of 200-mW average power and ~15-mm/s scan speed was discovered across the range of 200-kHz to 2-MHz repetition rates for minimizing insertion loss despite a 10-fold drop in laser pulse energy. Waveguide morphology and thermal modeling indicate that strong thermal diffusion effects at 200 kHz give way to a weak heat accumulation effect at ~1-µJ pulse energy for generating low loss waveguides, while stronger heat accumulation effects above 1-MHz repetition rate offered overall superior guiding. A comprehensive characterization of waveguide properties is presented for laser writing in the thermal diffusion and heat accumulation regimes. The waveguides are shown to be thermally stable up to 800°C and can be written in a convenient 520-μm depth range with low spherical aberration.

© 2008 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(230.7370) Optical devices : Waveguides
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Ultrafast Optics

History
Original Manuscript: May 6, 2008
Revised Manuscript: June 5, 2008
Manuscript Accepted: June 8, 2008
Published: June 11, 2008

Citation
Shane M. Eaton, Haibin Zhang, Mi Li Ng, Jianzhao Li, Wei-Jen Chen, Stephen Ho, and Peter R. Herman, "Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides," Opt. Express 16, 9443-9458 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-13-9443


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. B. Schaffer, J. F. Garcia, and E. Mazur, "Bulk heating of transparent materials using a high-repetition-rate femtosecond laser," Appl. Phys. A 76, 351-354 (2003). [CrossRef]
  2. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, "Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator," Opt. Lett. 26, 1516-1518 (2001). [CrossRef]
  3. R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, "Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator," IEEE J. Sel. Top. Quantum Electron. 12, 277-285 (2006). [CrossRef]
  4. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, "Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate," Opt. Express 13, 4708-4716 (2005). [CrossRef] [PubMed]
  5. R. Osellame, N. Chiodo, G. D. Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, "Optical waveguide writing with a diode-pumped femtosecond oscillator," Opt. Lett. 29, 1900-1902 (2004). [CrossRef] [PubMed]
  6. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996). [CrossRef] [PubMed]
  7. P. R. Herman, A. Oettl, K. P. Chen, and R. S. Marjoribanks, "Laser micromachining of transparent fused silica with 1-ps pulses and pulse trains," Proc. SPIE 3616, 148-155 (1999). [CrossRef]
  8. A. H. Nejadmalayeri, and P. R. Herman, "Rapid thermal annealing in high repetition rate ultrafast laser waveguidewriting in lithium niobate," Opt. Express 15, 10842-10854 (2007). [CrossRef] [PubMed]
  9. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations," J. Appl. Phys. 98, 013517 (2005). [CrossRef]
  10. Corning, "Corning EAGLE2000 AMLCD glass substrates material information," http://www.corning.com/displaytechnologies.
  11. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, "Localized Dynamics during Laser-Induced Damage in Optical Materials," Phys. Rev. Lett. 92, 087401 (2004). [CrossRef] [PubMed]
  12. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, "Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse," Opt. Express 15, 16800-16807 (2007). [CrossRef] [PubMed]
  13. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, "Fusion welding of glass using femtosecond laser pulses with high-repetition rates," J. Laser Micro/Nanoeng.  2, 57-63 (2007). [CrossRef]
  14. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749 (1996). [CrossRef]
  15. J. Li, P. R. Herman, S. M. Eaton, H. Zhang, A. H. Nejadmalayeri, and S. A. Hosseini, "Combining 5-D Microscopy with 3-D Femtosecond Laser Nanoprocessing," in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), Talk CFr4.
  16. P. Oberson, B. Gisin, B. Huttner, and N. Gisin, "Refracted near-field measurements of refractive index and geometry of silica-on-silicon integrated optical waveguides," Appl. Opt. 37, 7268-7272 (1998). [CrossRef]
  17. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, "Ultrafast laser processing: new options for three-dimensional photonic structures," J. Mod. Opt. 51, 2533-2542 (2004). [CrossRef]
  18. J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, "Waveguide fabrication in phosphate glasses using femtosecond laser pulses," Appl. Phys. Lett. 82, 2371-2373 (2003). [CrossRef]
  19. C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001). [CrossRef]
  20. H. Zhang, S. M. Eaton, J. Li, A. H. Nejadmalayeri, and P. R. Herman, "Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses," Opt. Express 15, 4182-4191 (2007). [CrossRef] [PubMed]
  21. R. Gattass, "Femtosecond-laser interactions with transparent materials: applications in micromachining and supercontinuum generation," (PhD thesis, Harvard University, Cambridge, 2006).
  22. R. Bruckner, "Metastable equilibrium density of hydroxyl-free synthetic vitreous silica," J. Non-Cryst. Solids 5, 281-285 (1971). [CrossRef]
  23. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, "Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation," Phys. Rev. B 73, 214101 (2006). [CrossRef]
  24. E. N. Glezer and E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Appl. Phys. Lett. 71, 882-884 (1997). [CrossRef]
  25. L. Shah, A. Arai, S. Eaton, and P. Herman, "Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate," Opt. Express 13, 1999-2006 (2005). [CrossRef] [PubMed]
  26. S. M. Eaton, H. Zhang, M. L. Ng, S. Ho, and P. R. Herman, "Optimization of repetition rate, pulse duration, and polarization for femtosecond-laser-writing of waveguides in borosilicate and fused silica glasses," in Conference on Lasers and Electro-Optics Europe (Optical Society of America, 2007), Talk CE5-5-WED.
  27. H. C. Guo, H. B. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, and Q. H. Gong, "The pulse duration dependence of femtosecond laser induced refractive index modulation in fused silica," J. Opt. A. 6, 787-790 (2004). [CrossRef]
  28. T. Fukuda, S. Ishikawa, T. Fujii, K. Sakuma, and H. Hosoya, "Low-loss optical waveguides written by femtosecond laser pulses for three-dimensional photonic devices," Proc. SPIE 5339, 524-538 (2004). [CrossRef]
  29. M. Ams, G. D. Marshall, and M. J. Withford, "Study of the influence of femtosecond laser polarisation on direct writing of waveguides," Opt. Express 14, 13158-13163 (2006). [CrossRef] [PubMed]
  30. D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, "Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing," Appl. Phys. A. 84, 257-260 (2006). [CrossRef]
  31. V. Diez-Blanco, J. Siegel, A. Ferrer, A. R. de la Cruz, and J. Solis, "Deep subsurface waveguides with circular cross section produced by femtosecond laser writing," Appl. Phys. Lett. 91, 051104 (2007). [CrossRef]
  32. L. McCaughan and E. J. Murphy, "Influence of temperature and initial titanium dimensions on fiber Ti:lithium niobate waveguide insertion loss at 1.3 microns," IEEE J. Quantum Electron. 19, 131-136 (1983). [CrossRef]
  33. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica," Appl. Phys. Lett. 87,014104 (2005). [CrossRef]
  34. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A. 84, 47-61 (2006). [CrossRef]
  35. D. M. Rayner, A. Naumov, and P. B. Corkum, "Ultrashort pulse non-linear optical absorption in transparent media," Opt. Express 13, 3208-3217 (2005). [CrossRef] [PubMed]
  36. J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, "Structural properties of femtosecond laser-induced modifications in LiNbO3," Appl. Phys. A 86, 165-170 (2007). [CrossRef]
  37. H. Zhang, S. M. Eaton, and P. R. Herman, "Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses," Opt. Express 14, 4826-4834 (2006). [CrossRef] [PubMed]
  38. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, "Optical properties of waveguides written by a 26 MHz stretched cavity Ti:Sapphire femtosecond oscillator," Opt. Express 13, 612-620 (2005). [CrossRef] [PubMed]
  39. R. Bruckner, "Properties and structure of vitreous silica. I," J. Non-Cryst. Solids 5, 123-175 (1970). [CrossRef]
  40. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, "Stress in femtosecond-laser-written waveguides in fused silica," Opt. Lett. 29, 1312-1314 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (3364 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited