OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 13 — Jun. 23, 2008
  • pp: 9519–9527

Transverse spatial structure of a high Fresnel number Vertical External Cavity Surface Emitting Laser

X. Hachair, S. Barbay, T. Elsass, I. Sagnes, and R. Kuszelewicz  »View Author Affiliations

Optics Express, Vol. 16, Issue 13, pp. 9519-9527 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (388 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The transverse spatial structure of an optically-pumped, Vertical External Cavity Surface Emitting Laser is investigated experimentally. The Fresnel number of the laser cavity is controlled with an intracavity lens. We show how the emission profile changes when passing from a low to a high Fresnel number configuration and analyze the RF spectrum of the total laser intensity. Though the laser operates in a multi-longitudinal mode configuration, the transverse profile of the laser emission shows well organized patterns.

© 2008 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(140.7270) Lasers and laser optics : Vertical emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 8, 2008
Revised Manuscript: April 11, 2008
Manuscript Accepted: May 17, 2008
Published: June 13, 2008

X. Hachair, S. Barbay, T. Elsass, I. Sagnes, and R. Kuszelewicz, "Transverse spatial structure of a high Fresnel number Vertical External Cavity Surface Emitting Laser," Opt. Express 16, 9519-9527 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003). [CrossRef] [PubMed]
  2. U. Keller and A. C. Tropper, "Passively modelocked surface-emitting semiconductor lasers," Phys. Rep. 429, 67-120 (2006). [CrossRef]
  3. N. N. Rosanov and N. V. Fedorov, "Diffraction switching waves and autosolitons in a saturable-absorber laser," Optik.Spectrosk. 72, 1394 (1992).
  4. V. B. Taranenko, K. Staliunas, and C. O. Weiss, "Spatial soliton laser: Localized structures in a laser with a saturable absorber in a self-imaging resonator," Phys. Rev. A 56, 1582 (1997). [CrossRef]
  5. M. Bache, F. Prati, G. Tissoni, R. Kheradmand, L. Lugiato, I. Protsenko, and M. Brambilla, "Cavity soliton laser based on VCSEL with saturable absorber," Appl. Phys. B pp. 913-920 (2005). [CrossRef]
  6. S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, "Cavity solitons work as pixels in semiconductors," Nature 419, 699-702 (2002). [CrossRef] [PubMed]
  7. S. Barbay, Y. Ménesguen, X. Hachair, L. Leroy, I. Sagnes, and R. Kuszelewicz, "Incoherent and coherent writing and erasure of cavity solitons in an optically pumped semiconductor amplifier," Opt. Lett. 31, 1504-1506 (2006). [CrossRef] [PubMed]
  8. F. T. Arecchi, S. Boccaletti, and P. L. Ramazza, "Pattern formation and competition in nonlinear optics," Phys. Rep. 318, 1-83 (1999). [CrossRef]
  9. C. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-221 (1990). [CrossRef]
  10. J. Scheuer and M. Orenstein, "Optical Vortices Crystals: Spontaneous Generation in Nonlinear Semiconductor Microcavities," Science 285(5425), 230-233 (1999). [CrossRef] [PubMed]
  11. S. Hegarty, G. Huyet, J. G. McInerney, and K. D. Choquette, "Pattern Formation in the Transverse Section of a Laser with a Large Fresnel Number," Phys. Rev. Lett. 82, 1434 (1999). [CrossRef]
  12. I. V. Babushkin, N. A. Loiko, and T. Ackemann, "Eigenmodes and symmetry selection mechanisms in circular large-aperture vertical-cavity surface-emitting lasers," Phys. Rev. E 69, 066,205 (2004). [CrossRef]
  13. T. T. Ackemann, S. Barland, M. Cara, S. Balle, R. Jäger,M. Grabherr, M. Miller, and K. J. Ebeling, "Spatial mode structure of bottom-emitting broad-area vertical-cavity surface-emitting lasers," J. Opt. B: Quantum Semiclass. 2, 406-412 (2000). [CrossRef]
  14. D. Ohnishi, T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surfaceemitting two-dimensional photonic crystal diode laser," Opt. Express 12, 1562-1568 (2004). [CrossRef] [PubMed]
  15. H. Liu, M. Yan, P. Shum, H. Ghafouri-Shiraz, and D. Liu, "Design and analysis of anti-resonant reflecting photonic crystal VCSEL lasers," Opt. Express 12, 4269-4274 (2004). [CrossRef] [PubMed]
  16. Y. F. Chen and Y. P. Lan, "Formation of optical vortex lattices in solid-state microchip lasers: spontaneous transverse mode locking," Phys. Rev. A 64, 063,807 (2001). [CrossRef]
  17. C. Green, G. B. Mindlin, E. J. D???Angelo, H. G. Solari, and J. R. Tredicce, "Spontaneous symmetry breaking in a laser: The experimental side," Phys. Rev. Lett. 65, 3124-3127 (1990). [CrossRef] [PubMed]
  18. D. Dangoisse, D. Hennequin, C. Lepers, E. Louvergneaux, and P. Glorieux, "Two-dimensional optical lattices in a CO2 laser," Phys. Rev. A 46, 5955-5958 (1992). [CrossRef] [PubMed]
  19. J. A. Arnaud, "Degenerate optical cavities," Appl. Opt. 8, 189-196 (1969). [CrossRef] [PubMed]
  20. M. Le Berre, E. Ressayre, and A. Tallet, "Spirals and vortex lattices in quasi-self-imaging divide-by-three optical parametric oscillators," Phys. Rev E 73, 036220 (2006). [CrossRef]
  21. V. B. Taranenko, K. Staliunas, and C. O. Weiss, "Pattern Formation and Localized Structures in Degenerate Optical Parametric Mixing," Phys. Rev. Lett. 81, 2236-2239 (1998). [CrossRef]
  22. S. Gigan, L. Lopez, N. Treps, A. Maitre, and C. Fabre, "Image transmission through a stable paraxial cavity," Phys. Rev. A 72, 023,804 (2005). [CrossRef]
  23. W. Nakwaski and R. Sarzala, "Transverse modes in gain-guided vertical-cavity surface-emitting lasers," Opt. Comm. 148, 63-69 (1998). [CrossRef]
  24. C. Degen, I. Fisher, and W. Elsässer, "Transverse modes in oxide confined VCSELs: Influence of pump profile, spatial hole burning, and thermal effects," Opt. Express 5, 38-47 (1999). [CrossRef] [PubMed]
  25. A. E. Siegman, "Lasers," University Science Books, (1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited