OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 13 — Jun. 23, 2008
  • pp: 9628–9644

Dispersive pulse compression in hollow-core photonic bandgap fibers

J. Lægsgaard and P. J. Roberts  »View Author Affiliations

Optics Express, Vol. 16, Issue 13, pp. 9628-9644 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1845 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Compression of linearly chirped picosecond pulses in hollow-core photonic bandgap fibers is investigated numerically. The modal properties of the fibers are modeled using the finite-element technique, whereas nonlinear propagation is described by a generalized nonlinear Schrödinger equation, which accounts both for the composite nature of the nonlinearity and the strong mode profile dispersion. Power limits for compression with more than 90% of the pulse energy in the main peak of the compressed pulse are investigated as a function of fiber design, and the temporal and spectral widths of the input pulse. The validity of approximate scaling rules is investigated, and figures of merit for fiber design are discussed.

© 2008 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Nonlinear Optics

Original Manuscript: March 18, 2008
Revised Manuscript: June 4, 2008
Manuscript Accepted: June 4, 2008
Published: June 16, 2008

J. Laegsgaard and P. J. Roberts, "Dispersive pulse compression in hollow-core photonic bandgap fibers," Opt. Express 16, 9628-9644 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. J. S. De Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, "All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber," Opt. Express 11, 2832-2837 (2003). [CrossRef] [PubMed]
  2. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tunnermann, "All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber," Opt. Express 11, 3332-3337 (2003). [CrossRef] [PubMed]
  3. C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, "A 158 fs 5.3 nJ fiber-laser system at 1 ???m using photonic bandgap fibers for dispersion control and pulse compression," Opt. Express 14, 239-44 (2006). [CrossRef]
  4. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003). [CrossRef] [PubMed]
  5. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, "Soliton pulse compression in photonic band-gap fibers," Opt. Express 13, 6153-6159 (2005). [CrossRef] [PubMed]
  6. C. J. Hensley, D. G. Ouzounov, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, "Silica-glass contribution to the effective nonlinearity of hollow-core photonic band-gap fibers," Opt. Express 15, 3507-3512 (2007). [CrossRef] [PubMed]
  7. F. Gerome, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, "Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression," Opt. Express 15, 7126-7131 (2007). [CrossRef] [PubMed]
  8. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-13 (2000). [CrossRef] [PubMed]
  9. M. Kolesik, E. M. Wright, and J. V. Moloney, "Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers." Appl. Phys. B: Lasers Opt. 79, 293-300 (2004). [CrossRef]
  10. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989). [CrossRef]
  11. J. Lægsgaard, "Mode profile dispersion in the generalised nonlinear Schr¨odinger equation," Opt. Express 15(24), 16,110-123 (2007). [CrossRef]
  12. J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, "Mode areas and field energy distribution in honeycomb photonic bandgap fibers," J. Opt. Soc. Am. B 20, 2037-45 (2003). [CrossRef]
  13. J. Lægsgaard, N. A. Mortensen, J. Riishede, and A. Bjarklev, "Material effects in airguiding photonic bandgap fibers," J. Opt. Soc. Am. B 20, 2046-51 (2003). [CrossRef]
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
  15. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, "Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses," J. Opt. Soc. Am. B(Optical Physics) 14, 650-60 (1997). [CrossRef]
  16. M. Mlejnek, E. M. Wright, and J. V. Moloney, "Dynamic spatial replenishment of femtosecond pulses propagating in air," Opt. Lett. 23, 382-384 (1998). [CrossRef]
  17. "JCMwave GmbH, www.jcmwave.com,".
  18. P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. S. J. Russell, "Design of low-loss and highly birefringent hollow-core photonic crystal fiber," Opt. Express 14, 7329-7341 (2006). [CrossRef] [PubMed]
  19. P. J. Roberts, "Birefringent hollow core fibers," Proc. SPIE 6782, 67821R (2007). [CrossRef]
  20. R. Amezcua-Correa, N. Broderick, M. Petrovich, F. Poletti, and D. Richardson, "Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation," Opt. Express 15, 17577-17586 (2007). [CrossRef] [PubMed]
  21. G. P. Agrawal, "Effect of intrapulse stimulated Raman scattering on soliton-effect pulse compression in optical fibers," Opt. Letters 15, 224-6 (1990). [CrossRef]
  22. F. Gérôme, J. Dupriez, J. C. Knight, and W. J. Wadsworth, "High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling," Opt. Express 16, 2381-2386 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited