OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 13 — Jun. 23, 2008
  • pp: 9677–9683

Planoconcave lens by negative refraction of stacked subwavelength hole arrays

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo  »View Author Affiliations

Optics Express, Vol. 16, Issue 13, pp. 9677-9683 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1336 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work presents the design of a planoconcave parabolic negative index metamaterial lens operating at millimeter wavelengths fabricated by using stacked subwavelength hole arrays. A staircase approximation to the ideal parabola profile has been done by removing step by step one lattice in each dimension of the transversal section. Theory predicts power concentration at the focal point of the parabola when the refractive index equals -1. Both simulation and measurement results exhibit an excellent agreement and an asymmetrical focus has been observed. The possibility to design similar planoconcave devices in the terahertz and optical wavelengths could be a reality in the near future.

© 2008 Optical Society of America

OCIS Codes
(000.4930) General : Other topics of general interest
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: May 1, 2008
Revised Manuscript: June 11, 2008
Manuscript Accepted: June 11, 2008
Published: June 16, 2008

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, "Planoconcave lens by negative refraction of stacked subwavelength hole arrays," Opt. Express 16, 9677-9683 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, "The Electrodynamics of Substances with Simultaneously Negative Values of ? and ?," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  4. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  6. C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Taniliean, and D. C. Vier, "Performance of a negative index of refraction lens," Appl. Phys. Lett. 84, 3232-3234 (2004). [CrossRef]
  7. P. Vodo, P. V. Parimi, W. T. Lu, and S. Sridar, "Focusing by planoconcave lens using negative refraction," Appl. Phys. Lett. 86, 201108 (2005). [CrossRef]
  8. B. Gralak, S. Enoch, and G. Tayeb, "Anomalous refractive properties of photonic Crystals," J. Opt. Soc. Am. A 17, 1012-1020 (2000). [CrossRef]
  9. D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E 71, 036609 (2005). [CrossRef]
  10. R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, "Simulation and testing of a graded negative index of refraction lens," Appl. Phys. Lett. 87, 091114 (2005). [CrossRef]
  11. C. G. Parazzoli, B. E. C. Koltenbah, R. B. Greegor, T. A. Lam, and M. H. Tanielian, "Eikonal equation for a general anisotropic or chiral medium: application to a negative-graded index-of-refraction lens with an anisotropic material," J. Opt. Soc. Am. B 23, 439-450 (2006). [CrossRef]
  12. R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, D. C. Vier, S. Schultz, D. R. Smith, and D. Schurig, "Microwave focusing and beam collimation using negative index of refraction lenses, " IET Microw. Antennas Propag. 1, 108-115 (2007). [CrossRef]
  13. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon. 1, 41-48 (2006). [CrossRef]
  14. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]
  15. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892-894 (2006). [CrossRef] [PubMed]
  16. M. Beruete, M. Sorolla, and I. Campillo, "Left-Handed Extraordinary Optical Transmission through a Photonic Crystal of Subwavelength Hole Arrays," Opt. Express 14, 5445-5455 (2006). [CrossRef] [PubMed]
  17. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  18. M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, "Enhanced millimetre wave transmission through subwavelength hole arrays," Opt. Lett. 29, 2500-2502 (2004). [CrossRef] [PubMed]
  19. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004). [CrossRef] [PubMed]
  20. M. Beruete, M. Sorolla, M. Navarro-Cía, F. Falcone, I. Campillo, and V. Lomakin, "Extraordinary Transmission and Left-Handed Propagation in miniaturized stacks of doubly periodic subwavelength hole arrays," Opt. Express 15, 1107-1114 (2007). [CrossRef] [PubMed]
  21. M. Navarro-Cía, M. Beruete, M. Sorolla, and I. Campillo, "Negative Refraction in a Prism Made Of Stacked Subwavelength Hole Arrays," Opt. Express 16, 560-566 (2008). [CrossRef] [PubMed]
  22. V. Yannopapas, "Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices," Phys. Stat. Sol.(RRL) 1, 208-210 (2007). [CrossRef]
  23. V. Yannopapas, "Subwavelength imaging of light by arrays of metal-coated semiconductor nanoparticles: a theoretical study," J. Phys. Condens. Matter 20, 255201-1-8 (2008). [CrossRef]
  24. S. Cornbleet, Microwave Optics-The Optics of Microwave Antenna Design (Academic Press, 1976).
  25. N. Engheta and R. W. Ziolkowski, "A Positive Future for Double-Negative Metamaterials," IEEE Trans. Microwave Theory Tech. 53, 1535-1556 (2005). [CrossRef]
  26. A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, 1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited