OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 13 — Jun. 23, 2008
  • pp: 9701–9707

A single-crystal source of path-polarization entangled photons at non-degenerate wavelengths

S. Sauge, M. Swillo, M. Tengner, and A. Karlsson  »View Author Affiliations

Optics Express, Vol. 16, Issue 13, pp. 9701-9707 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (670 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a bright, narrowband, compact, quasi-phasematched single-crystal source generating path-polarization-entangled photon pairs at 810 nm and 1550 nm at a maximum rate of 3×106 s-1 THz-1 mW-1 after coupling to single-mode fiber, and with two-photon interference visibility above 90%. While the source can already be used to implement quantum communication protocols such as quantum key distribution, this work is also instrumental for narrowband applications such as entanglement transfer from photonic to atomic qubits, or entanglement of photons from independent sources.

© 2008 Optical Society of America

OCIS Codes
(270.5565) Quantum optics : Quantum communications
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: May 16, 2008
Revised Manuscript: June 9, 2008
Manuscript Accepted: June 12, 2008
Published: June 17, 2008

S. Sauge, M. Swillo, M. Tengner, and A. Karlsson, "A single-crystal source of path-polarization entangled photons at non-degenerate wavelengths," Opt. Express 16, 9701-9707 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Aspect, P. Grangier, and G. Roger, "Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell???s inequalities," Phys. Rev. Lett. 49, 91 (1982). [CrossRef]
  2. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Violation of Bell Inequalities by Photons More Than 10 km Apart," Phys. Rev. Lett. 81, 3563-3566 (1998). [CrossRef]
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys.  4, 41.1-41.8 (2002).
  4. D. Bouwmeester, J-W Pan, K. Mattle, M. Eibl, H. Weinfurter and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997). [CrossRef]
  5. D.  Boschi, S.  Branca, F.  De Martini, L.  Hardy, and S.  Popescu, "Experimental realization of teleporting an unknown pure state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett.  80, 1121-1125 (1998). [CrossRef]
  6. D. Deutsch, and E. Ekert, "Quantum computation," Phys. World 11, 47 (1998).
  7. E.  Knill, R.  Laflamme, and G. J.  Milburn, "A scheme for efficient quantum computation with linear optics," Nature  409, 46-52 (2001). [CrossRef] [PubMed]
  8. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral1, M. Aspelmeyer & A. Zeilinger, "Experimental one-way quantum computing," Nature 434, 169 (2005). [CrossRef] [PubMed]
  9. V. Giovannetti, S. Lloyd, and L. Maccone, "Quantum-Enhanced Measurements: Beating the Standard Quantum Limit," Science 306, 1330-1336 (2004). [CrossRef] [PubMed]
  10. X.  Li, P. L.  Voss, J. E.  Sharping, and P.  Kumar, "Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett.  94, 053601 (2005). [CrossRef] [PubMed]
  11. J. Chen, K. F. Lee, X. Li, P. L Voss, and P. Kumar, "Schemes for fibre-based entanglement generation in the telecom band," New J. Phys.  9, 289 (2007). [CrossRef]
  12. J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005). [CrossRef] [PubMed]
  13. R. M.  Stevenson, R. J.  Young, P.  Atkinson, K.  Cooper, D. A.  Ritchie, and A. J.  Shields, "A semiconductor source of triggered entangled photon pairs," Nature  439, 179 (2006). [CrossRef] [PubMed]
  14. L.  Lanco, S.  Ducci, J.-P. Likforman, X.  Marcadet, J. A. W. van Houwelingen, H.  Zbinden, G.  Leo, and V.  Berger, "Semiconductor waveguide source of counterpropagating twin photons," Phys. Rev. Lett.  97, 173901 (2006). [CrossRef] [PubMed]
  15. W. T. M. Irvine, M. J. A. de Dood, D. Bouwmeester, "Bloch theory of entangled photon generation in nonlinear photonic crystals," Phys. Rev. A 72, 043815 (2005). [CrossRef]
  16. M.  Fiorentino, G.  Messin, C. E.  Kuklewicz, F. N. C.  Wong, and J. H.  Shapiro, "Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints," Phys. Rev. A  69, 041801 (2004). [CrossRef]
  17. F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient spectrally bright source of polarization entangled photons," Phys. Rev. A 71, 033805 (2005). [CrossRef]
  18. S. Sauge, M. Swillo, S. Albert-Seifried, G. B. Xavier, J. Waldebäck, M. Tengner, D. Ljunggren, and A. Karlsson, "Narrowband polarization-entangled photon pairs distributed over a WDM link for qubit networks," Opt. Express 15, 6926-6933 (2007). [CrossRef] [PubMed]
  19. K. Banaszek, A. B. U???Ren, and I. A. Walmsley, "Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides," Opt. Lett. 26, 1367-1369 (2001) [CrossRef]
  20. S.  Tanzilli, H.  De Riedmatten, H.  Tittel, H.  Zbinden, P.  Baldi, M.  De Micheli, D. B.  Ostrowsky, N.  Gisin, " Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett.  37, 28, (2001). [CrossRef]
  21. B. S.  Shi and A.  Tomita, "Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer," Phys. Rev. A  69, 013803 (2004). [CrossRef]
  22. T.  Kim, M.  Fiorentino, and F. N. C.  Wong, "Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer," Phys. Rev. A  73, 012316 (2006). [CrossRef]
  23. F. N. C.  Wong, J. H.  Shapiro, and T.  Kim, "Efficient generation of polarization-entangled photons in a nonlinear crystal," Laser Physics,  16, 1517-1524, (2006). [CrossRef]
  24. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, "A wavelength-tunable fiber-coupled source of narrowband entangled photons," Opt. Express 15, 15377-15386 (2007). [CrossRef] [PubMed]
  25. G. B. Xavier, G. Vilela de Faria, G. P. Temporão, and J. P. von der Weid, "Full polarization control for fiber optical quantum communication systems using polarization encoding," Opt. Express 16, 1867-1873 (2008). [CrossRef] [PubMed]
  26. L. M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics," Nature 414, 413 (2001). [CrossRef] [PubMed]
  27. M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden and N. Gisin, "High coherence photon pair source for quantum communication," New J. Phys. 10, 023027 (2008). [CrossRef]
  28. A. Zeilinger, "General properties of lossless beam splitters in interferometry," Am. J. Phys. 49, 882-883 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited