OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 13 — Jun. 23, 2008
  • pp: 9791–9794

Colloidal ZnO quantum dots in ultraviolet pillar microcavities

Tim Thomay, Tobias Hanke, Martin Tomas, Florian Sotier, Katja Beha, Vanessa Knittel, Matthias Kahl, Kelly M. Whitaker, Daniel R. Gamelin, Alfred Leitenstorfer, and Rudolf Bratschitsch  »View Author Affiliations


Optics Express, Vol. 16, Issue 13, pp. 9791-9794 (2008)
http://dx.doi.org/10.1364/OE.16.009791


View Full Text Article

Enhanced HTML    Acrobat PDF (443 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three dimensional light confinement and distinct pillar microcavity modes in the ultraviolet have been observed in pillar resonators with embedded colloidal ZnO quantum dots fabricated by focused ion beam milling. Results from a waveguide model for the mode patterns and their spectral positions are in excellent agreement with the experimental data.

© 2008 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(260.7190) Physical optics : Ultraviolet
(140.3948) Lasers and laser optics : Microcavity devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: March 11, 2008
Revised Manuscript: June 12, 2008
Manuscript Accepted: June 13, 2008
Published: June 18, 2008

Citation
Tim Thomay, Tobias Hanke, Martin Tomas, Florian Sotier, Katja Beha, Vanessa Knittel, Matthias Kahl, Kelly M. Whitaker, Daniel R. Gamelin, Alfred Leitenstorfer, and Rudolf Bratschitsch, "Colloidal ZnO quantum dots in ultraviolet pillar microcavities," Opt. Express 16, 9791-9794 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-13-9791


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Yamamoto, C. Santori, G. Solomon, J. Vuckovic, D. Fattal, E. Waks, and E. Diamanti, "Single photons for quantum information systems," Prog. in Inf. 1, 5-37 (2005). [CrossRef]
  2. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A Quantum Dot Single-Photon Turnstile Device," Science 290, 2282 (2000). [CrossRef] [PubMed]
  3. E. Moreau, I. Robert, J. M. Gérard, I. Abran, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865 (2001). [CrossRef]
  4. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602 (2002). [CrossRef] [PubMed]
  5. W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities," Phys. Rev. Lett. 96, 117401 (2006). [CrossRef] [PubMed]
  6. S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, "A gallium nitride single-photon source operating at 200 K," Nature Mat. 5, 887 (2007). [CrossRef]
  7. A. F. Jarjour, R. A. Taylor, R. A. Oliver, M. J. Kappers, C. J. Humphreys, and A. Tahraoui, "Cavity-enhanced blue single-photon emission from a single InGaN/GaN quantum dot," Appl. Phys. Lett. 91, 052101 (2007). [CrossRef]
  8. K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, S. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, "On the way to InGaN quantum dots embedded into monolithic nitride cavities," Phys. Status Solidi B 244, 1806 (2007). [CrossRef]
  9. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature,  406, 968 (2000). [CrossRef] [PubMed]
  10. X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermier, "Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals," Appl. Phys. Lett. 85, 712 (2004). [CrossRef]
  11. M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007). [CrossRef] [PubMed]
  12. S. Ghosh, V. Sih, W. H. Lau, D. D. Awschalom, S.-Y. Bae, S. Wang, S. Vaidya, and G. Chapline, "Room-temperature spin coherence in ZnO," Appl. Phys. Lett.,  86, 232507 (2005). [CrossRef]
  13. W. K. Liu, K. Whitaker, A. L. Smith, K. R. Kittilstved, B. H. Robinson, and D. R. Gamelin, "Room-Temperature Electron Spin Dynamics in Free-Standing ZnO Quantum Dots," Phys. Rev. Lett. 98, 186804 (2007). [CrossRef] [PubMed]
  14. D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, "Magnetic Quantum Dots: Synthesis, Spectroscopy, and Magnetism of Co2+- and Ni2+-Doped ZnO Nanocrystals," J. Am. Chem. Soc. 125, 13205-13218 (2003). [CrossRef] [PubMed]
  15. N. S. Norberg and D. R. Gamelin, "Influence of Surface Modification on the Luminescence of Colloidal ZnO Nanocrystals," J. Phys. Chem. B 109, 20810 (2005). [CrossRef]
  16. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nature Photon. 2, 230-233 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited