OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 13 — Jun. 23, 2008
  • pp: 9869–9883

All optical switches based on the coupling of surface plasmon polaritons

G. Margheri, T. Del Rosso, S. Sottini, S. Trigari, and E. Giorgetti  »View Author Affiliations

Optics Express, Vol. 16, Issue 13, pp. 9869-9883 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2333 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We studied the potentials of All Optical Switches (AOS) based on the intensity-dependent coupling and decoupling of light into the SPP modes (Surface Plasmon Polaritons) of a sinusoidally corrugated thin metal film (TMF), due to Kerr induced refractive index changes of the surrounding dielectrics. The ideal device has two spatially separated outputs, collecting the reflected and transmitted light and the active volume can be as small as 10-2 mm3. Gold and PTS (poly-(2,4-hexadiyne-1,6-diol bis(p-toluene sulfonate) are the materials considered. Losses are limited to 1.5 dB, while a 20 dB extinction ratio per gate has been theoretically demonstrated with signal pulsewidths of 5–10 ps, using a maximum optical switching peak power of 11 kW.

© 2008 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Surface Plasmons

Original Manuscript: February 25, 2008
Revised Manuscript: April 3, 2008
Manuscript Accepted: April 3, 2008
Published: June 20, 2008

G. Margheri, T. Del Rosso, S. Sottini, S. Trigari, and E. Giorgetti, "All optical switches based on the coupling of surface plasmon polaritons," Opt. Express 16, 9869-9883 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon polaritons guided by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802-046804 (2005). [CrossRef] [PubMed]
  2. V. A. Markel and A. K. Sarychev, "Propagation of surface plasmons in ordered and disordered chains of metal nanospheres," Phys. Rev. B 75, 085426-085437 (2007). [CrossRef]
  3. W. Saj, "FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Express 13, 4818-4827 (2005). [CrossRef] [PubMed]
  4. Y. Jiang, Z. Cao, G. Chen, X. Dou, and Y. Chen, "Low voltage electro-optic polymer light modulator using attenuated total internal reflection," Opt. Laser Technol. 33, 417-420 (2001). [CrossRef]
  5. A. Giannattasio, I. R. Hooper, and W. L. Sambles, " Transmission of light through thin silver films via surface plasmon polaritons," Opt. Express,  12, 5881-5886 (2004). [CrossRef] [PubMed]
  6. I. R. Hooper and J. R. Sambles, "Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces," Phys. Rev. B 70, 045421-045435 (2004). [CrossRef]
  7. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B,  54, 6227-6244 (1996). [CrossRef]
  8. R. Dragila. B. Luther-Davies, and S.Vukovic, "High Transparency of Classically Opaque Metallic Films," Phys. Rev. Lett. 55, 1117-1120 (1985). [CrossRef] [PubMed]
  9. E. Giorgetti, G. Margheri, T. DelRosso, and S. Sottini, "Periodic Metal-Dielectric Interfaces for Photonic Applications," Laser Physics 18, 1-6 (2008). [CrossRef]
  10. J. Wang, J. Sun, and Q. Sun, "Experimental observation of a 1.5 ?m band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation," Opt. Lett. 31, 1711-1713 (2006). [CrossRef] [PubMed]
  11. J. Wang, J. Sun, and Q. Sun, "Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation," Opt. Express 15, 1690-1699 (2007). [CrossRef] [PubMed]
  12. M. Kahl, and E. Voges, "Analysis of plasmon resonance and surface enhanced Raman scattering on periodic silver structures," Phys. Rev. B 61, 14078-14088 (2000). [CrossRef]
  13. J. Chandezon, M. T. Dupuis, and G. Cornet, "Multicoated gratings: a differential formalism applicable in the entire optical region," J. Opt. Soc. Am. 72, 839-846 (1982). [CrossRef]
  14. A. Feldner, W. Reichstein, T. Vogtmann, M. Schwoerer, L. Friedrich, T. Pliska, M. Liu, G. Stegeman, and Seung-Han Park, "Linear optical properties of polydiacetylene para-toluene sulfonate thin films," Opt. Commun. 195, 205-209 (2001). [CrossRef]
  15. R. J. Crook, J. R. Sambles, R. Rangel-Sojo, G. Spruce, and B. S. Wherrett, "The electronic nonlinear optical behaviour of a grating coupled polymer 9BCMU waveguide," J. Phys. D 28, 269-274 (1995). [CrossRef]
  16. L. G. Schulz, "The optical constants of silver, gold, copper and aluminum. I. the absorption coefficient k," J. Opt. Soc. Am. 44, 357-362 (1954). [CrossRef]
  17. L. G. Schulz, and F. R. Tangherlini, "Optical constants of silver, gold, copper, and aluminum. II. The index of refraction n," J. Opt. Soc. Am. 44, 362-368 (1954). [CrossRef]
  18. S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, "Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm," Phys. Rev. B. 69, 115421 (2004). [CrossRef]
  19. A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photonics Technol. Lett. 12, 42-44 (2000). [CrossRef]
  20. S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, "All-optical switching of grating transmission using cross-phase modulation in optical fibers," Electron Lett. 26, 1459-1460 (1990). [CrossRef]
  21. G. Margheri,A. Mannoni, and F. Quercioli, "High resolution angular and displacement sensing based on the excitation of surface plasma waves," Appl. Opt. 36, 4521-4525 (1997). [CrossRef] [PubMed]
  22. E. D. Palik, Handbook of Optical Constant of Solid III, (Academic Press,1998).
  23. S. H. Zaidi, D. W. Reicher, B. Draper, J. R. McNeil, and S. R. J. Brueck, "Characterization of Thin Al Films using Grating Coupling to Surface Plasma Waves," J. Appl. Phys. 71, 6039-6048 (1992). [CrossRef]
  24. M. J. Poulter, D. Neely, J. Collier, and C. Danson, " Transmission grating CPA system design for the Vulcan laser," Central Laser Facility Annual Report, 2000/2001, 157-159.
  25. G. Margheri, E. Giorgetti, S. Sottini, and G. Toci, "Nonlinear characterization of nanometer-thick dielectric layers by surface plasmon resonance techniques," J.Opt.Soc.Am 20, 741-751 (2003). [CrossRef]
  26. V. M. Shalaev, and A. K. Sarychev, "Nonlinear optics of random metal-dielectric films," Phys. Rev. B 57, 13265-13288 (1998). [CrossRef]
  27. R. J. Gehr, G. L. Fischer, R. W. Boyd, and J. E. Sipe, "Nonlinear optical response of layered composite materials," Phys. Rev. A,  53, 2792-2798 (1996). [CrossRef] [PubMed]
  28. F.  Hao, C. L.  Nehl, J. H.  Hafner, and P.  Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett.  7, 729-732 (2007). [CrossRef] [PubMed]
  29. S. L. Westcott, S. J. Oldenburg, T. R. Lee, and N. J. Halas, "Construction of simple gold nanoparticle aggregates with controlled plasmon-plasmon interactions," Chem. Phys. Lett. 300, 651-655 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited