OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 13 — Jun. 23, 2008
  • pp: 9996–10005

Miniaturized probe for femtosecond laser microsurgery and two-photon imaging

Christopher L. Hoy, Nicholas J. Durr, Pengyuan Chen, Wibool Piyawattanametha, Hyejun Ra, Olav Solgaard, and Adela Ben-Yakar  »View Author Affiliations


Optics Express, Vol. 16, Issue 13, pp. 9996-10005 (2008)
http://dx.doi.org/10.1364/OE.16.009996


View Full Text Article

Enhanced HTML    Acrobat PDF (1216 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Combined two-photon fluorescence microscopy and femtosecond laser microsurgery has many potential biomedical applications as a powerful “seek-and-treat” tool. Towards developing such a tool, we demonstrate a miniaturized probe which combines these techniques in a compact housing. The device is 10×15×40 mm3 in size and uses an air-core photonic crystal fiber to deliver femtosecond laser pulses at 80 MHz repetition rate for imaging and 1 kHz for microsurgery. A fast two-axis microelectromechanical system scanning mirror is driven at resonance to produce Lissajous beam scanning at 10 frames per second. Field of view is 310 µm in diameter and the lateral and axial resolutions are 1.64 µm and 16.4 µm, respectively. Combined imaging and microsurgery is demonstrated using live cancer cells.

© 2008 Optical Society of America

OCIS Codes
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 2, 2008
Revised Manuscript: June 8, 2008
Manuscript Accepted: June 10, 2008
Published: June 20, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Christopher L. Hoy, Nicholas J. Durr, Pengyuan Chen, Wibool Piyawattanametha, Hyejun Ra, Olav Solgaard, and Adela Ben-Yakar, "Miniaturized probe for femtosecond laser microsurgery and two-photon imaging," Opt. Express 16, 9996-10005 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-13-9996


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. K. Tirlapur and K. König, "Targeted transfection by femtosecond laser," Nature 418, 290-291 (2002). [CrossRef] [PubMed]
  2. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. S. Jin, and A. Ben-Yakar, "Functional regeneration after laser axotomy," Nature 432, 822-822 (2004). [CrossRef] [PubMed]
  3. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005). [CrossRef]
  4. N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, "Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor," Mech. Chem. Biosyst. 2, 17-25 (2005).
  5. A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. Mammini, M. W. Small, IV, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption," IEEE J. Sel. Top. Quantum Electron. 2, 801-809 (1996). [CrossRef]
  6. I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, "First clinical results with the femtosecond neodynium-glass laser in refractive surgery," J. Refract. Surg. 19, 94-103 (2003). [PubMed]
  7. W. Denk, J. H. Strickler, and W. W. Webb, "2-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  8. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, "Two-photon excitation fluorescence microscopy," Annu. Rev. Biomed. Eng. 2, 399-429 (2000). [CrossRef]
  9. W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: Multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1368-1376 (2003). [CrossRef]
  10. P. Theer and W. Denk, "On the fundamental imaging-depth limit in two-photon microscopy," J. Opt. Soc. Am. A 23, 3139-3149 (2006). [CrossRef]
  11. P. Theer, M. Hasan, and W. Denk, "Two-photon imaging to a depth of 1000?m in living brains by use of a Ti:Al2O3 regenerative amplifier," Opt. Lett. 28, 1022-1024 (2003). [CrossRef] [PubMed]
  12. N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, "Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: Three models of stroke," Nature Methods 3, 99-108 (2006). [CrossRef] [PubMed]
  13. K. König, O. Krauss, and I. Riemann, "Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared," Opt. Express 10, 171-176 (2002).
  14. E. Zeira, A. Manevitch, A. Khatchatouriants, O. Pappo, E. Hyam, M. Darash-Yahana, E. Tavor, A. Honigman, A. Lewis, and E. Galun, "Femtosecond infrared laser—an efficient and safe in vivo gene delivery system for prolonged expression," Mol. Ther. 8, 342-350 (2003). [CrossRef] [PubMed]
  15. L. Sacconi, I. M. Tolic´-Nørrelykke, R. Antolini, and F. S. Pavone, "Combined intracellular three-dimensional imaging and selective nanosurgery by a nonlinear microscope," J. Biomed. Opt. 10, 014002-014001 - 014002-014005 (2005). [CrossRef]
  16. K. König, I. Riemann, F. Stracke, and R. Le Harzic, "Nanoprocessing with nanojoule near-infrared femtosecond laser pulses," Med. Las. Appl. 20, 169-184 (2005). [CrossRef]
  17. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, "A miniature head-mounted two-photon microscope: High-resolution brain imaging in freely moving animals," Neuron 31, 903-912 (2001). [CrossRef] [PubMed]
  18. J. C. Jung and M. J. Schnitzer, "Multiphoton endoscopy," Opt. Lett. 28, 902-904 (2003). [CrossRef] [PubMed]
  19. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, "Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective," Opt. Lett. 29, 2521-2523 (2004). [CrossRef] [PubMed]
  20. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30, 2272-2274 (2005). [CrossRef] [PubMed]
  21. M. T. Myaing, D. J. MacDonald, and X. Li, "Fiber-optic scanning two-photon fluorescence endoscope," Opt. Lett. 31, 1076-1078 (2006). [CrossRef] [PubMed]
  22. L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, "Three-dimensional nonlinear optical endoscopy," JBO Lett. 12, 0405011-04050113 (2007).
  23. K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, "Clinical two-photon microendoscopy," Microsc. Res. Tech. 70, 398-402 (2007). [CrossRef] [PubMed]
  24. D. Lee and O. Solgaard, "Two-axis gimbaled microscanner in double SOI layers actuated by self-aligned vertical electrostatic combdrive" in Proceedings of the Solid-State Sensors, Actuators and Microsystems Workshop, Hilton Head Island, Hilton Head Island, South Carolina, June 6-10, 2004, 352-355.
  25. H. Ra, W. Piyawattanametha, Y. Taguchi, D. Lee, M. J. Mandella, and O. Solgaard, "Two-dimensional MEMS scanner for dual-axes confocal microscopy," J. Microelectromech. Syst. 16, 969-976 (2007). [CrossRef]
  26. W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006). [CrossRef] [PubMed]
  27. K. C. Maitland, H. J. Shin, H. Ra, D. Lee, O. Solgaard, and R. Richards-Kortum, "Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging," Opt. Express 14, 8604-8612 (2006). [CrossRef] [PubMed]
  28. J. B. Guild, C. Xu, and W. W. Webb, "Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence," Appl. Opt. 36, 397-401 (1997). [CrossRef] [PubMed]
  29. D. L. Dickensheets and G. S. Kino, "Micromachined scanning confocal optical microscope," Opt. Lett. 21, 764-766 (1996). [CrossRef] [PubMed]
  30. M. M. Dickens, M. P. Houlne, S. Mitra, and D. J. Bornhop, "Method for depixelating micro-endoscopic images," Opt. Eng. 38, 1836-1842 (1999). [CrossRef]
  31. J. W. Goodman, Introduction to Fourier Optics, 3rd Edition (Roberts & Co., Englewood, 2005).
  32. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nature Methods 2, 941-950 (2005). [CrossRef] [PubMed]
  33. F. Bourgeois and A. Ben-Yakar, "Femtosecond laser nanoaxotomy properties and their effect on axonal recovery in C. Elegans," Opt. Express 15, 8521-8531 (2007). [CrossRef] [PubMed]
  34. Urey, H. , "Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams," Appl. Opt.,  43620-625 (2004) [CrossRef] [PubMed]
  35. K. König, P. T. C. So, W. W. Mantulin, and E. Gratton, "Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes " Opt. Lett. 22, 135-136 (1997). [CrossRef] [PubMed]
  36. K. König, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, "Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes," Opt. Lett. 24, 113-115 (1999). [CrossRef]
  37. H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, "Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: Signal and photodamage," Biophys. J. 77, 2226-2236 (1999). [CrossRef] [PubMed]
  38. A. Hopt and E. Neher, "Highly nonlinear photodamage in two-photon fluorescence microscopy," Biophys. J. 80, 2029-2036 (2001). [CrossRef] [PubMed]
  39. H. F. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," Proc. Natl. Acad. Sci. U. S. A. 102, 15752-15756 (2005). [CrossRef] [PubMed]
  40. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, "Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods," Nano Lett. 7, 941-945 (2007). [CrossRef] [PubMed]
  41. M. J. Mandella, J. T. C. Liu, W. Piyawattanametha, H. Ra, P.-L. Hsiung, L. K. Wong, O. Solgaard, T. D. Wang, C. H. Contag, and G. S. Kino, "Compact optical design for dual-axes confocal endoscopic microscopes," Proc. SPIE 6443, E1-E9 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited