OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11052–11065

Optical micro-scale mapping of dynamic biomechanical tissue properties

Xing Liang, Amy L. Oldenburg, Vasilica Crecea, Eric J. Chaney, and Stephen A. Boppart  »View Author Affiliations

Optics Express, Vol. 16, Issue 15, pp. 11052-11065 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1675 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mechanical forces such as adhesion, shear stress and compression play crucial roles in tissue growth, patterning and development. To understand the role of these mechanical stimuli, it is of great importance to measure biomechanical properties of developing, engineered, and natural tissues. To enable these measurements on the micro-scale, a novel, dynamic, non-invasive, high-speed optical coherence elastography (OCE) system has been developed utilizing spectral-domain optical coherence tomography (OCT) and a mechanical wave driver. Experimental results of OCE on silicone phantoms are in good agreement with those obtained from a standardized indentation method. Using phase-resolved imaging, we demonstrate OCE can map dynamic elastic moduli of normal and neoplastic ex vivo human breast tissue with a sensitivity of 0.08%. Spatial micro-scale mapping of elastic moduli of tissue offers the potential for basic science and clinical investigations into the role biomechanics play in health and disease.

© 2008 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 8, 2008
Revised Manuscript: June 27, 2008
Manuscript Accepted: July 3, 2008
Published: July 9, 2008

Virtual Issues
Vol. 3, Iss. 8 Virtual Journal for Biomedical Optics

Xing Liang, Amy L. Oldenburg, Vasilica Crecea, Eric J. Chaney, and Stephen A. Boppart, "Optical micro-scale mapping of dynamic biomechanical tissue properties," Opt. Express 16, 11052-11065 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissue (Springer-Verlag New York, Inc., 1993).
  2. B. Shraiman, "Mechanical feedback as a possible regulator of tissue growth," Proc Natl. Acad. Sci. USA 102, 3318-3323 (2005). [CrossRef] [PubMed]
  3. B. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, "Cyclic mechanical strain regulates the development of engineered smooth muscle tissue," Nat. Biotechnol. 17, 979-983 (1999). [CrossRef] [PubMed]
  4. L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, "Imaging of the elastic properties of tissue - A review," Ultrasound Med. Biol. 22, 959-977 (1996). [CrossRef] [PubMed]
  5. J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, "Elastography: imaging the elastic properties of soft tissues with ultrasound," J. Med. Ultrasonics 29, 155-171 (2002). [CrossRef]
  6. I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography - elasticity imaging using ultrasound with application to muscle and breast in-vivo," Ultrason. Imaging 15, 73-88 (1993). [CrossRef] [PubMed]
  7. J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J. L. Gennisson, and M. Meunier, "In vivo breast tumor detection using transient elastography," Ultrasound Med. Biol. 29, 1387-1396 (2003). [CrossRef] [PubMed]
  8. E. J. Chen, J. Novakofski, W. K. Jenkins, and W. D. Jr. O�??Brien, "Young's modulus measurements of soft tissues with application to elasticity imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 43, 191-194 (1996). [CrossRef]
  9. A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, "MR Elastography of breast cancer: preliminary results," Am. J. Roentgenol. 178, 1411-1417 (2002).
  10. L. S. Wilson, D. E. Robinson, and M. J. Dadd, "Elastography - the movement begins," Phys. Med. Biol. 45, 1409-1421 (2000). [CrossRef] [PubMed]
  11. R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, "Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography," Magn. Reson. Med. 53, 372-387 (2005). [CrossRef] [PubMed]
  12. J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003). [CrossRef] [PubMed]
  13. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991). [CrossRef] [PubMed]
  14. G. J. Tearney, S. A. Boppart, B. E. Bouma, C. Pitris, M. E. Brezinski, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997). [CrossRef] [PubMed]
  15. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). [CrossRef] [PubMed]
  16. J. M. Schmitt, "OCT elastography: imaging microscopic deformation and strain of tissue," Opt. Express 3, 199-211 (1998). [CrossRef] [PubMed]
  17. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nature Phys. 3, 129-134 (2007). [CrossRef]
  18. T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, "Inverse scattering for high-resolution interferometric microscopy," Opt. Lett. 31, 3585-3587 (2006). [CrossRef] [PubMed]
  19. R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006). [CrossRef] [PubMed]
  20. A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. M. R. Kaazempur, "Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue," Ann. Biomed. Eng. 33, 1631-1639 (2005). [CrossRef] [PubMed]
  21. G. Van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, "Robust intravascular optical coherence elastography by line correlations," Phys. Med. Biol. 52, 2445-2458 (2007). [CrossRef] [PubMed]
  22. J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, "Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues," Heart 90, 556-562 (2004). [CrossRef] [PubMed]
  23. H. Ko, W. Tan, R. Stack, and S. A. Boppart, "Optical coherence elastography of engineered and developing tissue," Tissue Eng. 12, 63-73 (2006). [CrossRef] [PubMed]
  24. R. K. Wang, S. J. Kirkpatrick, and M. Hinds, "Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time," Appl. Phys. Lett. 90, 164105 (2007). [CrossRef]
  25. S. J. Kirkpatrick, R. K. Wang and D. D. Duncan, "OCT-based elastography for large and small deformations," Opt. Express 14, 11585-11597 (2006). [CrossRef] [PubMed]
  26. J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999). [CrossRef]
  27. B. W. Pogue and M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041102 (2006). [CrossRef] [PubMed]
  28. E. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. Chadwick, "Determination of elastic moduli of thin layers of soft material using the atomic force microscope," Biophys. J. 82, 2798-2810 (2002). [CrossRef] [PubMed]
  29. L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004). [CrossRef]
  30. A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, "Measuring the elastic modulus of ex vivo small tissue samples," Phys. Med. Biol. 48, 2183-2198 (2003). [CrossRef] [PubMed]
  31. E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, J. B. Weaver, and K. D. Paulsen, "Initial in vivo experience with steady-state subzone-based MR elastography of the human breast," J. Magn. Reson. Imaging. 17, 72-85 (2003). [CrossRef]
  32. R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, "High-resolution tensor MR elastography for breast tumour detection," Phys. Med. Biol. 45, 1649-1664 (2000). [CrossRef] [PubMed]
  33. J. Zhou, J. and L. L. Hsiung, "Biomolecular origin of the rate-dependent deformation of prismatic enamel," Appl. Phys. Lett. 89, 051904 (2006). [CrossRef]
  34. P. Frank, Introduction to System Sensitivity Theory (Academic Press, INC., 1978).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited