OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11259–11265

Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses

Yang Yang, Jianjun Yang, Chunyong Liang, and Hongshui Wang  »View Author Affiliations

Optics Express, Vol. 16, Issue 15, pp. 11259-11265 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2600 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the enhanced absorption properties in a wavelength range of 0.2-25 μm for NiTi alloy targets structured by femtosecond laser pulses in air. Three different types of surface structures are produced with varying laser fluences. Measured reflectances through integrating sphere technique show that their couplings of incident electromagnetic irradiations are improved greatly over the broadband wavelength range. In particular, for coral-like micro-structures on the metal surfaces, approximate 90% absorption can be achieved from ultraviolet to mid-infrared region. Cut-off wavelengths of the enhanced absorption for the varied dimensional surface structures are determined experimentally. Chemical analysis by X-ray photoelectron spectroscopy indicates that blackness of metal surfaces is not attributed to the change in elemental composition. The physics of such remarkable absorption for the structured metal surfaces are discussed as well.

© 2008 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Laser Micromachining

Original Manuscript: April 3, 2008
Revised Manuscript: May 26, 2008
Manuscript Accepted: June 30, 2008
Published: July 11, 2008

Yang Yang, Jianjun Yang, Chunyong Liang, and Hongshui Wang, "Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses," Opt. Express 16, 11259-11265 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. V. Teperik, V. V. Popov, F. J. García de Abajo, "Total Resonant Absorption of Light by Plasmons on the Nanoporous Surface of a Metal," Phys. Solid State 47, 172-175 (2005). [CrossRef]
  2. M. M. Murnane, H. C. Kapteyn, S. P. Gordon, J. Bokor, R. W. Falcone, "Efficient coupling of high- intensity subpicosecond laser pulses into solids," Appl. Phys. Lett. 62, 1068-1070 (1993). [CrossRef]
  3. S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, "Confined Plasmons in Metallic Nanocavities," Phys. Rev. Lett. 87, 176801 (2001). [CrossRef] [PubMed]
  4. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, "Microstructuring of silicon with femtosecond laser pulses," Appl. Phys. Lett. 73, 1673-1675 (1998). [CrossRef]
  5. Z. Huang, J. E. Carey, M. Liu X. Guo, E. Mazur, and J. C. Campbell, "Microstructured silicon photodetector," Appl. Phys. Lett. 89, 033506 (2006). [CrossRef]
  6. R. A. Myers, R. Farrell, A. M. Karger, J. E. Carey, and E. Mazur, "Enhancing near-infrared avalanche photodiode performance by femtosecond laser microstructuring," Appl. Opt. 45, 8825-8831 (2006). [CrossRef] [PubMed]
  7. A. Y. Vorobyev and C. Guo, "Enhanced absorptance of gold following multipulse femtosecond laser ablation," Phys. Rev. B 72, 195422 (2005). [CrossRef]
  8. A. Y. Vorobyev and C. Guo, "Colorizing metals with femtosecond laser pulses" Appl. Phys. Lett. 92, 41914 (2008). [CrossRef]
  9. A. Y. Vorobyev and C. Guo, "Effect of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals," Appl. Phys. A 86, 321-324 (2007). [CrossRef]
  10. K. Paivasaari, J. J. Kaakkunen, M. Kuittinen, and T. Jaaskelainen, "Enhanced optical absorptance of metals using interferometric femtosecond ablation," Opt. Express 15, 13838-13843 (2007). [CrossRef] [PubMed]
  11. J. Yang, Y. Zhao, and X. Zhu, "Transition between nonthermal and thermal ablation of metallic targets under the strike of high-fluence ultrashort laser pulses," Appl. Phys. Lett. 88, 094101 (2006). [CrossRef]
  12. V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, and A. V. Zayats, "Dispersing Light with Surface Plasmon Polaritonic Crystals," Phys. Rev. Lett. 99, 083901 (2007). [CrossRef] [PubMed]
  13. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, " Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997). [CrossRef]
  14. M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, "Stationary Surface Plasmons on a Zero-Order Metal Grating," Phys. Rev. Lett. 80, 5667-5670 (1998). [CrossRef]
  15. J. Sukmanowskia, J. R. Viguié, B. Nölting, and F. X. Royer, "Light absorption enhancement by nanoparticles," J. Appl. Phys. 97, 104332 (2005). [CrossRef]
  16. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, "Electromagnetic coupling between a metal nanoparticle grating and a metallic surface," Opt. Lett. 30, 3404-3406 (2005). [CrossRef]
  17. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature  424, 824-830 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited