OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11548–11554

Perfectly matched layer absorption boundary condition in planewave based transfer-scattering matrix method for photonic crystal device simulation

Ming Li, Xinhua Hu, Zhuo Ye, Kai-Ming Ho, Jiangrong Cao, and Mamoru Miyawaki  »View Author Affiliations


Optics Express, Vol. 16, Issue 15, pp. 11548-11554 (2008)
http://dx.doi.org/10.1364/OE.16.011548


View Full Text Article

Enhanced HTML    Acrobat PDF (201 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performance of the perfectly matched layer absorption boundary condition is fully exploited when it is applied to the planewave based transfer-scattering matrix method in photonic crystal device simulation. The mode profile of one dimensional dielectric waveguide and the optical properties of sub-wavelength aluminum grating with semi-infinite substrate are studied to illustrate the accuracy and power of this approach.

© 2008 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.2770) Diffraction and gratings : Gratings
(220.4830) Optical design and fabrication : Systems design
(050.5298) Diffraction and gratings : Photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: June 3, 2008
Revised Manuscript: July 10, 2008
Manuscript Accepted: July 12, 2008
Published: July 18, 2008

Citation
Ming Li, Xinhua Hu, Zhuo Ye, Kai-Ming Ho, Jiangrong Cao, and Mamoru Miyawaki, "Perfectly matched layer absorption boundary condition in planewave based transfer-scattering matrix method for photonic crystal device simulation," Opt. Express 16, 11548-11554 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11548


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, 1995).
  4. S. P. Ogawa, M. Imada, S. Yoshimoto, M. Okano and S. Noda, "Control of light emission by 3D photonic crystals," Science 305, 227 (2004).
  5. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999). [CrossRef] [PubMed]
  6. E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Nature 407, 6807 (2000) [PubMed]
  7. A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech Houses, 2000).
  8. J. Jin, The Finite Element Method in Electromagnetics (Wiley and Sons, 2002).
  9. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys Rev. Lett. 65, 3125 (1990). [CrossRef] [PubMed]
  10. J. B. Pendry, "Photonic band structures," J. Mod. Opt. 41, 209 (1994). [CrossRef]
  11. Z. Y. Li and K. M. Ho, "Application of structural symmetries in the plane-wave-based transfer-matrix method for three-dimensional photonic crystal waveguides," Phys. Rev. B 68, 245117 (2003).
  12. Z. Y. Li and K. M. Ho, "Bloch mode reflection and lasing threshold in semiconductor nanowire laser arrays," Phys. Rev. B 71, 045315 (2005).
  13. M. Li, Z. Y. Li, K. M. Ho, J. R. Cao, and M. Miyawaki, "High-efficiency calculations for three-dimensional photonic crystal cavities," Opt. Lett. 31, 262 (2006). [PubMed]
  14. M. Li, X. Hu, Z. Ye, K. M. Ho, J. R. Cao and M. Miyawaki, "Higher-order incidence transfer matrix method used in three-dimensional photonic crystal coupled-resonator array simulation," Opt. Lett. 31, 3498 (2006). [CrossRef] [PubMed]
  15. Z. Ye, X. Hu, M. Li and K. M. Ho, "Propagation of guided modes in curved nanoribbon waveguides," Appl. Phys. Lett. 89, 241108 (2006). [CrossRef]
  16. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic-waves," J. Computational Physics,  114, 185 (1994). [CrossRef]
  17. J.P. Berenger, "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," J. Computational Physics,  127, 363, (1996) [CrossRef]
  18. Z. S. Sacks, D. M. Kingsland, R. Lee and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas and Propagation 43,1460 (1995). [CrossRef]
  19. S. D. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas and Propagation 44, 1630 (1996). [CrossRef]
  20. A. Yariv and P. Yeh, Optical Waves in Crystal, (Wiley, 1984).
  21. X. Hu, C. T. Chan, J. Zi, M. Li and K. M. Ho, "Diamagnetic response of metallic photonic crystals at infrared and visible Frequencies," Phys. Rev. Lett. 96, 223901 (2006). [CrossRef] [PubMed]
  22. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited