OSA's Digital Library

Optics Express

Optics Express

  • Vol. 16, Iss. 16 — Aug. 4, 2008
  • pp: 11888–11893

Large-scale fabrication of ordered metallic hybrid nanostructures

X. Chen, X. Wei, and K. Jiang  »View Author Affiliations

Optics Express, Vol. 16, Issue 16, pp. 11888-11893 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3489 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A low-cost and high-throughput method for the fabrication of large-area ordered hybrid metallic nanostructure arrays is presented. Each structure unit is a nanobowl with a hexagonal distributed pillar array upon it. A self-assembled monolayer of polystyrene (PS) nanospheres is used as a template. After thermal evaporation, electroforming and removal of the nanospheres and the conductive layer, ordered arrays of hybrid nickel nanostructures have been fabricated. Both nanobowl arrays and pillar arrays exhibit uniform sizes. Smooth interior surfaces were observed in the nanobowl arrays. The geometry of the structure can be tuned by controlling the thickness of the conductive layer. The approach presented in this paper can be extended to fabricate ordered hybrid nanostructures of a wide range of metals and alloys with controlled size.

© 2008 Optical Society of America

OCIS Codes
(080.2203) Geometric optics : Fabrication, electroforming
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Design and Fabrication

Original Manuscript: June 19, 2008
Revised Manuscript: July 18, 2008
Manuscript Accepted: July 21, 2008
Published: July 24, 2008

X. Chen, X. Wei, and K. Jiang, "Large-scale fabrication of ordered metallic hybrid nanostructures," Opt. Express 16, 11888-11893 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, "Laser rapid prototyping of photonic band-gap microstructures," Science 275, 1284-1286 (1997). [CrossRef] [PubMed]
  2. C. Kuo, J. Shiu, Y. Cho, and P. Chen, "Fabrication of large-area periodic nanopillar arrays for nanoimprint lithography using polymer colloid masks," Adv. Mater. 15, 1065-1068 (2003). [CrossRef]
  3. A. J. Haes and R. P. van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002). [CrossRef] [PubMed]
  4. K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smirth, and M. Mrksich, "Protein nanoarrays generated by dip-pen nanolithography," Science 295, 1702-1705 (2002). [CrossRef] [PubMed]
  5. M. Hehn, K. Ounadjela, J.-P. Buncher, F. Rousseaux, D. Decanini, B. Bartenlian, and C. Chappert, "Nanoscale magnetic domains in mesoscopic magnets," Science 272, 1782-1785 (1996). [CrossRef] [PubMed]
  6. J. Y. Cheng, C. A. Ross, V. Z. H. Chan, E. L. Thomas, R. G. H. Lamertink, and G. J. Vancso, "Fabrication of nanopatterned thin films using self-assembled block copolymer lithography," Adv. Mater. 13, 1174-8 (2001). [CrossRef]
  7. D. F. P. Pile and D. K. Gramotnev, "Adiabatic and non-adiabatic nano-focusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett.  89, 041111/1-4 (2006).
  8. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Wavelength selective nanophotonic components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007). [CrossRef] [PubMed]
  9. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007). [CrossRef] [PubMed]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  11. J. Dintinger, S. Klein, and T. W. Ebbesen, "Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical switching," Adv. Mater. 18, 1267-1270 (2006). [CrossRef]
  12. A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, "A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004). [CrossRef]
  13. T. Ito and S. Okazaki, "Pushing the limits of lithography," Nature 406, 1027-1031(2000). [CrossRef] [PubMed]
  14. A. K. Srivastava, S. Madhavi, T. J. White, and R. V. Ramanujan, "Template assisted assembly of cobalt nanobowl arrays," J. Mater. Chem. 15, 4424-4428 (2005). [CrossRef]
  15. X. Wang, E. Graugnard, J. S. King, Z. Wang, and C. J. Summers, "Large-scale fabrication of ordered nanobowl arrays," Nano Lett. 4, 2223-2226 (2004). [CrossRef]
  16. S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, "Nanopin plasmonic resonator array and its optical properties," Nano Lett. 7, 1076-1080 (2007). [CrossRef] [PubMed]
  17. C. Shin, W. Shin, and H.-G. Hong, "Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor," Electrochimica Acta 53, 720-728 (2007). [CrossRef]
  18. X.-Y. Wang, H. Zhong, J.-H. Yuan, D. Sheng, X. Ma, J.-J. Xu, and H.-Y. Chen, "Direct Electrochemical Fabrication of Metallic Nanopillar Array on Au Electrode Surface by the Template Technique," Chem. Lett. 33, 982-985 (2004). [CrossRef]
  19. R. Micheletto, H. Fukuda, and M. Ohtsut, "A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles," Langmuir 11, 3333-3336 (1996). [CrossRef]
  20. W. J. Wang, G. H. Lim, W. D. Song, K. D. Ye, J. Zhou, M. H. Hong, and B. Liu, "Laser induced nanobump array on magnetic glass disk for low flying height application," J. Phys.: Conference Series 59, 177-180 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited