OSA's Digital Library

Optics Express

Optics Express

  • Vol. 16, Iss. 16 — Aug. 4, 2008
  • pp: 11954–11968

Back-seeding of higher order gain processes in picosecond supercontinuum generation

Peter M. Moselund, Michael H. Frosz, Carsten L. Thomsen, and Ole Bang  »View Author Affiliations


Optics Express, Vol. 16, Issue 16, pp. 11954-11968 (2008)
http://dx.doi.org/10.1364/OE.16.011954


View Full Text Article

Enhanced HTML    Acrobat PDF (1352 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In photonic crystal fibers with closely spaced zero dispersion wavelengths it is possible to have two pairs of four-wave mixing (FWM) gain peaks. Here, we demonstrate both numerically and experimentally how the outer four-wave mixing gain peaks can be used to produce a strong amplification peak in a picosecond supercontinuum. The method involves feeding back part of the output light of a SC source and time matching it with the pump light. In this way it is possible to produce a gain of over 20 dB near the FWM gain wavelengths.

© 2008 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 12, 2008
Revised Manuscript: July 16, 2008
Manuscript Accepted: July 18, 2008
Published: July 25, 2008

Citation
Peter M. Moselund, Michael H. Frosz, Carsten L. Thomsen, and Ole Bang, "Back-seeding of higher order gain processes in picosecond supercontinuum generation," Opt. Express 16, 11954-11968 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-11954


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  2. A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express 14, 1245-1160 (2006). [CrossRef]
  3. P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, "Broadband light generation around 1300nm through spectrally recoiled solitons and dispersive waves," Opt. Lett. 33, 621- 623 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-6-621 [CrossRef] [PubMed]
  4. A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, "Feasibility of white-light time-resolved optical mammography," J. Biomed. Opt. 11, 54035 (2006). [CrossRef]
  5. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, "A white light confocal microscope for spectrally resolved multidimensional imaging," J. Microsc. 227, 203-215 (2007). [CrossRef] [PubMed]
  6. J. H. Lee, K. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, "Single, depolarized, CW supercontinuum-based wavelength-division-multiplexed passive optical network architecture with Cband OLT L-band ONU, and U-band monitoring," J. Lightwave Technol. 25, 2891-2897 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-10-2891. [CrossRef]
  7. E. Raikkonen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, "Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers," Opt. Express 14, 7914-7923 (2006). [CrossRef]
  8. P. S. Westbrook, J. W. Nicholson, and K. S. Feder, "Grating phase matching beyond a continuum edge," Opt. Lett. 32, 2629-2631 (2007).http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-17-2629. [CrossRef] [PubMed]
  9. D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M. de Sterke, and B. J. Eggleton, "Tunable spectral enhancement of fiber supercontinuum," Opt. Lett. 32, 1644-1646 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-12-1644. [CrossRef] [PubMed]
  10. J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended blue supercontinuum generation in cascaded holey fibers," Opt. Lett. 30, 3132-3134 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-23-3132. [CrossRef] [PubMed]
  11. J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrཿes, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, "Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm," Opt. Commun. 281, 433-438 (2008). [CrossRef]
  12. C. Xiong, A. Witkowska, S. G. Leon-Saval, T. A. Birks, and W. J. Wadsworth, "Enhanced visible continuum generation from a microchip 1064nm laser," Opt. Express 14, 6188-6193 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6188. [CrossRef] [PubMed]
  13. W. J. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, "Hole inflation and tapering of stock photonic crystal fibres," Opt. Express 13, 6541-6549 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6541. [CrossRef] [PubMed]
  14. P. Falk, M. H. Frosz, and O. Bang, "Supercontinuum generation in a photonic crystal fiber with two zerodispersion wavelengths tapered to normal dispersion at all wavelengths," Opt. Express 13, 7535-7540 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7535. [CrossRef] [PubMed]
  15. F. Lu, Y. Deng, and W. H. Knox, "Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers," Opt. Lett. 30, 1566-1568 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-12-1566. [CrossRef] [PubMed]
  16. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. S. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2864. [CrossRef] [PubMed]
  17. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. S. J. Russell, "Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser," Opt. Lett. 30, 1980-1982 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-15-1980. [CrossRef] [PubMed]
  18. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zerodispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5715. [CrossRef] [PubMed]
  19. C. Cheng, X. Wang, Z. Fang, and B. Shen, "Enhanced dispersive wave generation by using chirped pulses in a microstructured fiber," Opt. Commun. 244, 219-225 (2005). [CrossRef]
  20. S. Martin-Lopez, L. Abrardi, P. Corredera, M. Gonzalez-Herraez, and A. Mussot, "Spectrally-bounded continuous-wave supercontinuum generation in a fiber with two zero-dispersion wavelengths," Opt. Express 16, 6745-6755 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6745. [CrossRef] [PubMed]
  21. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, "29 W high power CW supercontinuum source," Opt. Express 16, 5954-5962 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5954. [CrossRef] [PubMed]
  22. A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, "Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers," Appl. Phys. Lett. 92, 141103 (2008). [CrossRef]
  23. A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, "Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths," Opt. Express 15, 11553-11563 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-18-11553. [CrossRef] [PubMed]
  24. N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, "Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing," J. Opt. Soc. Am. B 20, 2329-2337 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-11-2329. [CrossRef]
  25. M. H. Frosz, T. Sørensen, and O. Bang, "Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping," J. Opt. Soc. Am. B 23, 1692-1699 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-8-1692. [CrossRef]
  26. J. M. Dudley, G. Genty, and B. J. Eggleton, "Harnessing and control of optical rogue waves in supercontinuum generation," Opt. Express 16, 3644-3651 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-3644. [CrossRef] [PubMed]
  27. M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005). [CrossRef]
  28. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett. 28, 2225- 2227 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-22-2225. [CrossRef] [PubMed]
  29. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, "Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber," Opt. Lett. 30, 1234-1236 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-10-1234. [CrossRef] [PubMed]
  30. S. Johnson and J. Joannopoulos, "Block-iterative frequency-domain methods for maxwellཿs equations in a planewave basis," Opt. Express 8, 173-190 (2001). http://www.opticsinfobase.org/abstract.cfm?URI=oe-8-3-173. [CrossRef] [PubMed]
  31. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 2001), 3rd ed.
  32. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-6-1045. [CrossRef] [PubMed]
  33. G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-19-4614. [CrossRef] [PubMed]
  34. T. Schreiber, T. V. Andersen, D. Schimpf, J. Limpert, and A. T¨unnermann, "Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths," Opt. Express 13, 9556-9569 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9556. [CrossRef] [PubMed]
  35. A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. S. Russell, "Time-spectrally-resolved ultrafast nonlinear dynamics in smallcore photonic crystal fibers: Experiment and modelling," Opt. Express 12, 6498-6507 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-26-6498. [CrossRef] [PubMed]
  36. M. H. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13, 6181-6192 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6181+ Erratum, Opt. Express 15, 5262- 5263 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5262. [CrossRef] [PubMed]
  37. M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, "Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4445. [CrossRef] [PubMed]
  38. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003). [CrossRef] [PubMed]
  39. G. Genty, S. Coen, and J. M. Dudley, "Fiber supercontinuum sources," J. Opt. Soc. Am. B 24, 1771-1785 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=josab-24-8-1771. [CrossRef]
  40. K. Iizuka, "In free space and special media," Vol. 1 of "Elements of Photonics" (John Wiley & Sons, New York, 2002), pp. 389-392.
  41. P. M. Moselund, M. H. Frosz, O. Bang, and C. L. Thomsen, "Back seeding of picosecond supercontinuum generation in photonic crystal fibres," in Proceedings of SPIE Photonics Europe, Conference on Photonic Crystal Fibres, Proc. SPIE 6990, 24 (2008).
  42. M. Nakazawa, K. Suzuki, and H. A. Haus, "The Modulational Instability Laser-Part I: Experiment," IEEE J. Quantum Electron. 25, 2036-2044 (1989). [CrossRef]
  43. C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, "Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train," Opt. Lett. 27, 915-917 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-11-915. [CrossRef]
  44. J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, "Mode areas and field-energy distribution in honeycomb photonic bandgap fibers," J. Opt. Soc. Am. B 20, 2037-2045 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-10-2037. [CrossRef]
  45. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989). [CrossRef]
  46. O. V. Sinkin, R. Holzl¨ohner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J. Lightwave Technol. 21, 61-68 (2003). http://dx.doi.org/10.1109/JLT.2003.808628. [CrossRef]
  47. M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9391. [CrossRef] [PubMed]
  48. S. B. Cavalcanti, G. P. Agrawal, and M. Yu, "Noise amplification in dispersive nonlinear media," Phys. Rev. A 51, 4086-4092 (1995). http://dx.doi.org/10.1103/PhysRevA.51.4086. [CrossRef]
  49. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2838. [CrossRef] [PubMed]
  50. K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, "Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 ?m," in Proceedings of Optical Fiber Communication Conference and Exhibit (OFC) Proc. 70, FA9-1-FA9-3 (2002).
  51. T. T. Alkeskjold, Crystal Fibre A/S, Blokken 84, DK-3460, Birkerød, Denmark (personal communication, 2008).
  52. N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995). [CrossRef]
  53. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves," Nature 450, 1054-1058 (2007). [CrossRef] [PubMed]
  54. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-13-1123. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (2193 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited