OSA's Digital Library

Optics Express

Optics Express

  • Vol. 16, Iss. 16 — Aug. 4, 2008
  • pp: 11987–11994

Laser beam wavefront correction for ultra high intensities with the 200 TW laser system at the Advanced Laser Light Source

S. Fourmaux, S. Payeur, A. Alexandrov, C. Serbanescu, F. Martin, T. Ozaki, A. Kudryashov, and J. C. Kieffer  »View Author Affiliations

Optics Express, Vol. 16, Issue 16, pp. 11987-11994 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (280 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We successfully implemented laser beam wavefront correction on the 200 TW laser system at the Advanced Laser Light Source. Ultra high intensities in excess of 1020 W/cm2 have been demonstrated. This system is, to our knowledge, the first 100 TW class laser to combine simultaneously ultra high intensity, 109 laser pulse contrast ratio and 10 Hz high repetition

© 2008 Optical Society of America

OCIS Codes
(140.3590) Lasers and laser optics : Lasers, titanium
(140.7090) Lasers and laser optics : Ultrafast lasers
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 18, 2008
Revised Manuscript: June 13, 2008
Manuscript Accepted: June 17, 2008
Published: July 25, 2008

S. Fourmaux, S. Payeur, A. Alexandrov, C. Serbanescu, F. Martin, T. Ozaki, A. Kudryashov, and J. C. Kieffer, "Laser beam wavefront correction for ultra high intensities with the 200 TW laser system at the advanced laser light source," Opt. Express 16, 11987-11994 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Kieffer, A. Krol, Z. Jiang,  et al., "Future of laser-based hard X-ray sources for medical imaging," Appl. Phys. B 74, S75-81 (2002). [CrossRef]
  2. A. Rousse, K. Ta Phuoc, R. Shah,  et al., "Production of a keV X-Ray Beam from Synchrotron Radiation in Relativistic Laser-Plasma Interaction," Phys. Rev. Lett. 93, 135005 (2004). [CrossRef] [PubMed]
  3. S. Sebban, T. Mocek, D. Ros,  et al., "Demonstration of a Ni-Like Kr Optical-Field-Ionization Collisional Soft X-Ray Laser at 32.8 nm," Phys. Rev. Lett. 89, 253901 (2002). [CrossRef] [PubMed]
  4. L. M. Chen, P. Forget, S. Fourmaux,  et al., "Study of hard x-ray emission from intense femtosecond Ti:Sapphire laser-solid target interactions," Phys. Plasmas 11, 4439 (2004). [CrossRef]
  5. S. P. D. Mangles, C. D. Murphy,  et al., "Monoenergetic beams of relativistic electrons from intense laser-plasma interactions," Nature 431, 535 (2004). [CrossRef] [PubMed]
  6. C. G. R. Geddes, Cs. Toth, J. Van Tilborg, et al., "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding," Nature 431, 538 (2004). [CrossRef] [PubMed]
  7. J. Faure, Y. Glinec, A. Pukhov,  et al., "A laser-plasma accelerator producing monoenergetic electron beams," Nature 431, 541 (2004). [CrossRef] [PubMed]
  8. S. Fritzler, V. Malka, G. Grillon,  et al., "Proton beams generated with high-intensity lasers: Applications to medical isotope production," Appl. Phys. Lett. 83, 3039 (2003). [CrossRef]
  9. J. Magill, H. Schwoerer, F. Ewald,  et al., "Laser transmutation of iodine-129," Appl. Phys. B 77, 387 (2003). [CrossRef]
  10. S. P. Hatchett, C. G. Brown, T. E. Cowan,  et al., "Electron, photon, and ion beams from the relativistic interaction of Petawatt laser with solid targets," Phys. Plasmas 7, 2076 (2000). [CrossRef]
  11. S. C. Wilks, A. B. Langdon, T. E. Cowan,  et al., "Energetic proton generation in ultra-intense laser-solid interactions," Phys. Plasmas 8, 542 (2001). [CrossRef]
  12. J. Fuchs, P. Antici, E. d�??Humières,  et al., "Laser-driven proton scaling laws and new paths towards energy increase," Nat. Physics 2, 48 (2006). [CrossRef]
  13. L. O. Silva, M. Marti, and J. R. Davies,  et al., "Proton Shock Acceleration in Laser-Plasma Interactions," Phys. Rev. Lett. 92, 015002 (2004). [CrossRef] [PubMed]
  14. A. Krol, A. Ikhlef, J. C. Kieffer,  et al., "Laser-based microfocused x-ray source for mammography: Feasibility study," Med. Phys. 24, 725 (1997). [CrossRef] [PubMed]
  15. R. Toth, J. C. Kieffer, S. Fourmaux et al., "In-line phase-contrast imaging with a laser-based hard x-ray source," Rev. Sci. Instrum. 76, 083701 (2005). [CrossRef]
  16. H. Baumhacker, G. Pretzler, K. J. Witte,  et al., "Correction of strong phase and amplitude modulations by two deformable mirrors in a multistaged Ti:Sapphire laser," Opt. Lett. 27, 1570 (2002). [CrossRef]
  17. F. Druon, G. Chériaux, J. Faure,  et al., "Wave-front correction of femtosecond terawatt lasers by deformable mirrors," Opt. Lett. 23, 1043 (1998). [CrossRef]
  18. B. Wattelier, J , Fuchs, J. P. Zou,  et al., "High-power short pulse laser repetition rate improvement by adaptive wave front correction," Rev. Sci. Instrum. 75, 5186 (2004). [CrossRef]
  19. S. W. Back, P. Rousseau, T. A. Planchon,  et al., "Generation and characterization of the highest laser intensities (1022 W/cm2)," Opt. Lett. 29, 2837 (2004). [CrossRef]
  20. V. Yanovsky, V. Chvykov, G. Kalinchenko,  et al., "Ultra-high intensity-300 TW laser at 0.1 Hz repetition rate," Opt. Express 16, 2110 (2008). [CrossRef]
  21. Y. Akahane, J. Ma, Y. Fukuda,  et al., "Characterization of wave-front corrected 100 TW, 10 Hz laser pulses with peak intensities greater than 1020 W/cm2," Rev. Sci. Instrum. 77, 023102 (2006). [CrossRef]
  22. J. C. Kieffer, M. Chaker, J. P. Matte,  et al., "Ultrafast x-ray sources," Phys. Fluids B 5, 2676 (1993). [CrossRef]
  23. A. V. Kudryashov and V. V. Samarkin, "Bimorph mirrors for correction and formation of laser beam," Proc. 2nd Int. Workshop on Adaptive Optics for industry and Medicine, Durham, England, Ed. G. Love, 193, World Scientific (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited