OSA's Digital Library

Optics Express

Optics Express

  • Vol. 16, Iss. 16 — Aug. 4, 2008
  • pp: 12114–12123

In-plane photonic transduction of silicon-on-insulator microcantilevers

Jong Wook Noh, Ryan Anderson, Seunghyun Kim, Jaime Cardenas, and Gregory P. Nordin  »View Author Affiliations


Optics Express, Vol. 16, Issue 16, pp. 12114-12123 (2008)
http://dx.doi.org/10.1364/OE.16.012114


View Full Text Article

Enhanced HTML    Acrobat PDF (1408 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an in-plane photonic transduction method for microcantilevers, which have been widely investigated for sensor applications. In our approach the microcantilever is etched to form a single mode rib waveguide. Light propagates down the microcantilever and crosses a small gap at the free end of the microcantilever, some of which is captured by an asymmetrical multimode waveguide that terminates in a Y-branch. The Y-branch outputs are used to form a differential signal that is monotonically dependent on microcantilever deflection. The measured differential signal matches simulation when microcantilever rotation is properly accounted for. The measured differential signal sensitivity is 1.4×10-4 nm-1 and the minimum detectable deflection is 0.35 nm.

© 2008 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors

ToC Category:
Integrated Optics

History
Original Manuscript: May 13, 2008
Revised Manuscript: July 23, 2008
Manuscript Accepted: July 25, 2008
Published: July 29, 2008

Citation
Jong Wook Noh, Ryan Anderson, Seunghyun Kim, Jaime Cardenas, and Gregory P. Nordin, "In-plane photonic transduction of silicon-on-insulator microcantilevers," Opt. Express 16, 12114-12123 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-12114


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Thundat, E. A. Watcher, S. L. Sharp, and R. J. Warmack, "Detection of mercury vapor using resonating cantilevers," Appl. Phys. Lett. 66, 1695-1697 (1995). [CrossRef]
  2. R. Raiteri, M. Grattarola, and R. Berger, "Micromechanics senses biomolecules," Materialstoday 5, 22-29 (2002).
  3. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, "Translating biomolecular recognition into nanomechanics," Science 288, 316-318 (2000). [CrossRef] [PubMed]
  4. G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, "Bioassay of prostate-specific antigen using microcantilevers," Nat. Biotechnol. 19, 856-860 (2001). [CrossRef] [PubMed]
  5. R. Bashir, J. Z. Hilt, O. Elibol, A. Gupta, and N. A. Peppas, "Microcantilever as an ultrasensitive pH microsensor," Appl. Phys. Lett. 81, 3091-3093 (2002). [CrossRef]
  6. A. M. Moulin, S. J. O�??Shea, and M. E. Welland, "Microcantilever-based biosensors," Ultramicroscopy 82, 23-31 (2000). [CrossRef] [PubMed]
  7. T. Thundat and K. M. Hansen, "Microcantilever biosensors," Methods 37, 57-64 (2005). [PubMed]
  8. L. G. Carrascosa, M. Moreno, M. �?lvarez, and L. M. Lechuga, "Nanomechanical biosensors: a new sensing tool," TrAC 25, 196-206 (2006).
  9. J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Güntherodt, M. Hegner, and Ch. Gerber, "Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA," Nat. Nanotechnol. 1, 214-220 (2006). [CrossRef]
  10. H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, "A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors," Appl. Phys. A 66, S61-S64 (1998). [CrossRef]
  11. J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, "Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array," Appl. Phys. Lett. 83, 3428-3430 (2003). [CrossRef]
  12. L. Fadel, F. Lochon, I. Dufour, and O. Français, "Chemical sensing: millimeter size resonant microcantilever performance," J. Micromech. Microeng. 14, S23-S30 (2004). [CrossRef]
  13. A. Boisen, J. Thaysen, H. Jensenius, and O. Hansen, "Environmental sensors based on micromachined cantilevers with integrated read-out," Ultramicroscopy 82, 11-16 (2000). [CrossRef] [PubMed]
  14. P. S. Waggoner and H. G. Craighead, "Micro- and nanomechanical sensors for environmental, chemical, and biological detection," Lab Chip 7, 1238-1255 (2007). [CrossRef] [PubMed]
  15. P. A. Rasmussen, J. Thaysen, O. Hansen, S. C. Eriksen, and A. Boisen, "Optimised cantilever biosensor with piezoresistive read-out," Ultramiscroscopy 97, 371-376 (2003). [CrossRef]
  16. J. D. Adams, B. Rogers, L. Manning, Z. Hu, T. Thundat, H. Cavazos, and S. C. Minne, "Piezoelectric self-sensing of adsorption-induced microcantilever bending," Sens. Actuators A 126, 182-186 (2006).
  17. C. L. Britton, R. L. Jones, P. I. Oden, Z. Hu, R. J. Warmack, S. F. Smith, W. L. Bryan, and J. M. Rochelle, "Multiple-input microcantilever sensors," Ultramicroscopy 82, 17-21 (2000). [CrossRef] [PubMed]
  18. J. Amirola, A. Rodríguez, L. Casta�?er, J. P. Santos, J. Gutiérrez, and M. C. Horrillo, "Micromachined silicon microcantilevers for gas sensing applications with capacitive read-out," Sens. Actuators B 111-112, 247-153 (2005).
  19. G. P. Nordin, "In-Plane Photonic Transduction as an Enabler for Microcantilever Arrays," ASME Workshop�??Nanomechanics: Sensors and Actuators, Knoxville (2005).
  20. G. P. Nordin, J. W. Noh, Y. Qian, J. Song, R. Anderson, and S. Kim, "Demonstration of in-plane photonic transduction for microcantilever arrays," International Workshop on Nanomechanical Sensors, Montreal, Canada, May 28-30, 2007.
  21. G. P. Nordin, J. W. Noh, and S. Kim, "In-plane photonic transduction for microcantilever sensor arrays," Proc. SPIE 6447, 64470J (2007). [CrossRef]
  22. Y. Qian, J. Song, S. Kim, and G. P. Nordin, "Compact waveguide splitter and bend networks," Opt. Express 16, 4981-4990 (2008). [CrossRef] [PubMed]
  23. K. E. Burcham, G. N. D. Brabander, and J. T. Boyd, "Micromachined silicon cantilever beam accelerometer incorporating an integrated optical waveguide," Proc. SPIE 1793, 12-18 (1992). [CrossRef]
  24. S. Wu, H.J. Frankena, "Integrated optical sensors using micromechanical bridges and cantilevers," Proc. SPIE 1793, 83-89 (1992). [CrossRef]
  25. M. Nordstrom, D. A. Zauner, M. Calleja, J. Hubner, and A. Boisen, "Integrated optical readout for miniaturization of cantilever-based sensor system," Appl. Phys. Lett. 91, 103512 (2007). [CrossRef]
  26. R. A. Soref, J. Schmidtchen, and K. Peterman, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991). [CrossRef]
  27. J. Thaysen, A. D. Yalçinkaya, P. Vettiger, and A. Menon, "Polymer-based stress sensor with integrated readout," J. Phys. D: Appl. Phys. 35, 2698-2703 (2002). [CrossRef]
  28. A. Kooser, R. L. Gunter, W. D. Delinger, T. L. Porter, and M. P. Eastman, "Gas sensing embedded piezoresistive microcantilever sensors," Sens. Actuators B 99, 474-479 (2004). [CrossRef]
  29. X. Yu, J. Thaysen, O. Hansen, and A. Boisen, "Optimization of sensitivity and noise in piezoresistive cantilevers," J. Appl. Phys. 92, 6296-6301 (2002). [CrossRef]
  30. X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang, "Design of high-sensitivity cantilever and its monolithic integration with CMOS circuit," IEEE Sens. J. 7, 489-495 (2007). [CrossRef]
  31. C. Kocabas, and A. Aydinli, "Design and analysis of an integrated optical sensor for scanning force microscopies," IEEE Sens. J. 5, 411-418 (2005). [CrossRef]
  32. K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, and L. M. Lechuga, "A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces," J. Lightwave Technol. 24, 2132-2138 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited