OSA's Digital Library

Optics Express

Optics Express

  • Vol. 16, Iss. 16 — Aug. 4, 2008
  • pp: 12124–12138

Power dependent soliton location and stability in complex photonic structures

Y. Kominis and K. Hizanidis  »View Author Affiliations

Optics Express, Vol. 16, Issue 16, pp. 12124-12138 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1499 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The presence of spatial inhomogeneity in a nonlinear medium results in the breaking of the translational invariance of the underlying propagation equation. As a result traveling wave soliton solutions do not exist in general for such systems, while stationary solitons are located in fixed positions with respect to the inhomogeneous spatial structure. In simple photonic structures with monochromatic modulation of the linear refractive index, soliton position and stability do not depend on the characteristics of the soliton such as power, width and propagation constant. In this work, we show that for more complex photonic structures where either one of the refractive indices (linear or nonlinear) is modulated by more than one wavenumbers, or both of them are modulated, soliton position and stability depends strongly on its characteristics. The latter results in additional functionality related to soliton discrimination in such structures. The respective power (or width / propagation constant) dependent bifurcations are studied in terms of a Melnikov-type theory. The latter is used for the determination of the specific positions, with respect to the spatial structure, where solitons can be located. A wide variety of cases are studied, including solitons in periodic and quasiperiodic lattices where both the linear and the nonlinear refractive index are spatially modulated. The investigation of a wide variety of inhomogeneities provides physical insight for the design of a spatial structure and the control of the position and stability of a localized wave.

© 2008 Optical Society of America

OCIS Codes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

Original Manuscript: May 21, 2008
Revised Manuscript: July 9, 2008
Manuscript Accepted: July 25, 2008
Published: July 29, 2008

Y. Kominis and K. Hizanidis, "Power dependent soliton location and stability in complex photonic structures," Opt. Express 16, 12124-12138 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143149 (1997). [CrossRef]
  2. P. Russel, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef]
  3. B.P. Anderson and M. A. Kasevich, "Macroscopic quantum interference from atomic tunnel arrays," Science 282, 1686-1689 (1998). [CrossRef] [PubMed]
  4. A. Trombettoni and A. Smerzi, "Discrete solitons and breathers with dilute BoseEinstein condensates," Phys. Rev. Lett. 86, 2353-2356 (2001). [CrossRef] [PubMed]
  5. D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behaviour in linear and nonlinear waveguide lattices," Nature 424, 817-823 (2003). [CrossRef] [PubMed]
  6. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, "Discrete solitons in photorefractive optically induced photonic lattices," Phys. Rev. E 66, 046602 (2002). [CrossRef]
  7. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, "Observation of Discrete Solitons in Optically Induced Real Time Waveguide Arrays," Phys. Rev. Lett. 90, 023902 (2003). [CrossRef] [PubMed]
  8. D. Neshev, E. Ostrovskaya, Y. S. Kivshar, and W. Krolikowski, "Spatial solitons in optically induced gratings," Opt. Lett. 28, 710-712 (2003). [CrossRef] [PubMed]
  9. D. Neshev, A. A. Sukhorukov, Y. S. Kivshar, and W. Krolikowski, "Observation of transverse instabilities in optically induced lattices," Opt. Lett. 29, 259-261 (2004). [CrossRef] [PubMed]
  10. Y. Kominis and K. Hizanidis, "Continuous-wave-controlled steering of spatial solitons," J. Opt. Soc. Am. B 21, 562-567 (2004). [CrossRef]
  11. Y. Kominis and K. Hizanidis, "Optimal multidimensional solitary wave steering," J. Opt. Soc. Am. B 22, 1360-1365 (2005). [CrossRef]
  12. Z. Chen, H. Martin, E. Eugenieva, J. Xu, and J. Yang, "Formation of discrete solitons in light-induced photonic lattices," Opt. Express 13, 1816-1826 (2005). [CrossRef] [PubMed]
  13. C. R. Rosberg, D. N. Neshev, A. A. Sukhorukov, Y. S. Kivshar, and W. Krolikowski, "Tunable positive and negative refraction in optically induced photonic lattices," Opt. Lett. 30, 2293-2295 (2005). [CrossRef] [PubMed]
  14. T. Song, S. M. Liu, R. Guo, Z. H. Liu, N. Zhu, and Y. M. Gao, "Observation of composite gap solitons in optically induced nonlinear lattices in LiNbO3:Fe crystal," Opt. Express,  14, 1924-1932 (2006). [CrossRef] [PubMed]
  15. I. Tsopelas, Y. Kominis, and K. Hizanidis, "Soliton dynamics and interactions in dynamically photoinduced lattices," Phys. Rev. E 74, 036613 (2006). [CrossRef]
  16. I. Tsopelas, Y. Kominis, and K. Hizanidis, "Dark soliton dynamics and interactions in continuous-wave-induced lattices," Phys. Rev. E 76, 046609 (2007). [CrossRef]
  17. S. Trillo and W. Torruellas, Discrete Solitons, (Springer-Verlag, Berlin, 2001).
  18. D. N. Christodoulides and R. I. Joseph, "Discrete self-focusing in nonlinear arrays of coupled waveguides," Opt. Lett. 13, 794-796 (1988). [CrossRef] [PubMed]
  19. D. C. Hutchings, "Theory of Ultrafast Nonlinear Refraction in Semiconductor Superlattices," IEEE J. Sel. Top. Quantum Electron. 10, 1124-1132 (2004). [CrossRef]
  20. L. Berge, V. K. Mezentsev, J. J. Rasmussen, P. L. Christiansen, and Y. B. Gaididei, "Self-guiding light in layered nonlinear media," Opt. Lett. 25, 1037-1039 (2000). [CrossRef]
  21. D. E. Pelinovsky, P. G. Kevrekidis, and D. J. Frantzeskakis, "Averaging for Solitons with Nonlinearity Management," Phys. Rev. Lett. 91, 240201 (2003). [CrossRef] [PubMed]
  22. H. Sakaguchi and B. A. Malomed, "Resonant nonlinearity management for nonlinear Schrodinger solitons," Phys. Rev. E 70, 066613 (2004). [CrossRef]
  23. Y. V. Kartashov and V. A. Vysloukh, "Resonant phenomena in nonlinearly managed lattice solitons," Phys. Rev. E 70, 026606 (2004). [CrossRef]
  24. G. Fibich, Y. Sivan, and M. I. Weinstein, "Bound states of nonlinear Schrodinger equations with a periodic nonlinear microstructure," Physica D 217, 31-57 (2006). [CrossRef]
  25. F. Abdullaev, A. Abdumalikov, and R. Galimzyanov, "Gap solitons in Bose-Einstein condensates in linear and nonlinear optical lattices," Phys. Lett. A 367, 149-155 (2007). [CrossRef]
  26. Z. Rapti, P. G. Kevrekidis, V. V. Konotop and C. K. R. T. Jones, "Solitary waves under the competition of linear and nonlinear periodic potentials," J. Phys. A: Math. Theor. 40, 14151-14163 (2007). [CrossRef]
  27. R. Hao, R. Yang, L. Li, and G. Zhou, "Solutions for the propagation of light in nonlinear optical media with spatially inhomogeneous nonlinearities," Opt. Commun. 281, 1256-1262 (2008). [CrossRef]
  28. J. Belmonte-Beitia, V. M. Perez-Garcia, V. Vekslerchik, and P. J. Torres, "Lie Symmetries and Solitons in Nonlinear Systems with Spatially Inhomogeneous Nonlinearities," Phys. Rev. Lett. 98, 064102 (2007). [CrossRef] [PubMed]
  29. Y. Kominis, "Analytical solitary wave solutions of the nonlinear Kronig-Penney model in photonic structures," Phys. Rev. E 73, 066619 (2006). [CrossRef]
  30. Y. Kominis and K. Hizanidis, "Lattice solitons in self-defocusing optical media: Analytical solutions of the nonlinear Kronig-Penney model," Opt. Lett. 31, 2888-2890 (2006). [CrossRef] [PubMed]
  31. Y. Kominis, A. Papadopoulos, and K. Hizanidis, "Surface solitons in waveguide arrays: Analytical solutions," Opt. Express 15, 10041-10051 (2007). [CrossRef] [PubMed]
  32. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, "Dynamics of Discrete Solitons in Optical Waveguide Arrays," Phys. Rev. Lett. 83, 2726 - 2729 (1999). [CrossRef]
  33. A. A. Sukhorukov and Y. S. Kivshar, "Soliton control and Bloch-wave filtering in periodic photonic lattices," Opt. Lett. 30, 1849-1851 (2005). [CrossRef] [PubMed]
  34. Z. Xu, Y. V. Kartashov, and L. Torner, "Soliton Mobility in Nonlocal Optical Lattices," Phys. Rev. Lett. 95, 113901 (2005). [CrossRef] [PubMed]
  35. R. A. Vicencio and M. Johansson "Discrete soliton mobility in two-dimensional waveguide arrays with saturable nonlinearity," Phys. Rev. E 73, 046602 (2006). [CrossRef]
  36. A. A. Sukhorukov, "Enhanced soliton transport in quasiperiodic lattices with introduced aperiodicity," Phys. Rev. Lett. 96, 113902 (2006). [CrossRef] [PubMed]
  37. T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis, and J. Cuevas, "Radiationless Traveling Waves in Saturable Nonlinear Schrodinger Lattices," Phys. Rev. Lett. 97, 124101 (2006). [CrossRef] [PubMed]
  38. D. E. Pelinovsky, "Translationally invariant nonlinear Schrodinge lattices," Nonlinearity 19, 2695-2716 (2006). [CrossRef]
  39. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, "Soliton percolation in random optical lattices," Opt. Express 15, 12409-12417 (2007). [CrossRef] [PubMed]
  40. H. Sakaguchi and B. A. Malomed, "Gap solitons in quasiperiodic optical lattices," Phys. Rev. E 74, 026601 (2006). [CrossRef]
  41. N. K. Efremidis and D. N. Christodoulides, "Lattice solitons in Bose-Einstein condensates," Phys. Rev. A 67, 063608 (2003). [CrossRef]
  42. P. J. Y. Louis, E. A. Ostrovskaya, C. M. Savage, and Y. S. Kivshar, "Bose-Einstein condensates in optical lattices: Band-gap structure and solitons," Phys. Rev. A 67, 013602 (2003). [CrossRef]
  43. D. E. Pelinovsky, A. A. Sukhorukov and Y. S. Kivshar, "Bifurcations and stability of gap solitons in periodic potentials," Phys. Rev. E 70, 036618 (2004). [CrossRef]
  44. J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields," Applied Mathematical Series 42, (Springer, New York, Berlin, 1983).
  45. S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos," Texts in Applied Mathematics 2, (Springer, New York, Berlin, 1990).
  46. T. Kapitula, "Stability of waves in perturbed Hamiltonian systems," Physica D 156, 186-200 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited