OSA's Digital Library

Optics Express

Optics Express

  • Vol. 16, Iss. 16 — Aug. 4, 2008
  • pp: 12264–12271

Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique

K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang  »View Author Affiliations

Optics Express, Vol. 16, Issue 16, pp. 12264-12271 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (296 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cr4+:YAG double-clad crystal fiber with an uniform 10-μm core was fabricated by using a sapphire tube as a heat capacitor to stabilize the power fluctuation of the CO2 laser in the co-drawing laser-heated pedestal growth system. The uniformity of the fiber core showed a factor of 3 improvement compared to that without the use of sapphire tube. The variation of the core diameter is within the ±1.35-degree adiabatic criterion and has a autocorrelation length of 1.7 mm. The measured propagation loss is only 0.02 dB/cm. The sapphire tube also reduces the vertical temperature gradient during the crystal fiber growth process so the 10-μm crystal core exhibits a smooth perimeter. The sapphire tube assisted system can be applied to the growth of many other optical crystal materials.

© 2008 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(160.3380) Materials : Laser materials

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 25, 2008
Revised Manuscript: May 19, 2008
Manuscript Accepted: June 2, 2008
Published: August 1, 2008

K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, "Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique," Opt. Express 16, 12264-12271 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Sennaroglu, "Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible," Prog. Quantum Electron. 26, 287-352 (2002). [CrossRef]
  2. Y. Kalisky, "Cr4+-doped crystals: their use as lasers and passive Q switches," Prog. Quantum Electron. 28, 249-303 (2004). [CrossRef]
  3. M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, "Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers," Rev. Sci. Instrum. 55, 1791-1796 (1984). [CrossRef]
  4. C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, "Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission," Opt. Lett. 29, 439-441 (2004). [CrossRef] [PubMed]
  5. C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, "Double-clad Cr4+:YAG crystal fiber amplifier," Opt. Lett. 30, 129-131 (2005). [CrossRef] [PubMed]
  6. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003). [CrossRef] [PubMed]
  7. Y. S. Lin, C. C. Lai, K. Y. Huang, J. C. Chen, C. Y. Lo, S. L. Huang, T. Y. Chang, J. Y. Ji, and P. Shen, "Nanostructures formation of double-clad Cr4+:YAG crystal fiber grown by co-drawing laser-heated pedestal," J. Cryst. Growth 289, 515-519 (2006). [CrossRef]
  8. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices," IEE Proc. J. Optoelecton. 138, 343-354 (1991). [CrossRef]
  9. T. A. Birks and Y. W. Li, "The shape of fiber tapers," J. Lightwave Technol. 10, 432-438 (1992). [CrossRef]
  10. D. Marcuse, "Mode conversion caused by surface imperfections of a dielectric slab waveguide," Bell Syst. Tech. J. 48, 3187-3215 (1969).
  11. C. T. Lee, M. L. Wu, L. G. Sheu, P. L. Fan, and J. M. Hsu, "Design and analysis of completely adiabatic tapered waveguides by conformal mapping," J. Lightwave Technol. 15, 403-410 (1997). [CrossRef]
  12. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, 1991).
  13. F. P. Payne and J. P. R. Lacey, "A theoretical analysis of scattering loss from planar optical waveguide," Opt. Quantum Electron. 26, 977-986 (1994). [CrossRef]
  14. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, "Radiation modes and roughness loss in high index-contrast waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 1306-1321 (2006). [CrossRef]
  15. C. W. Lan and C. Y. Tu, "Three-dimensional simulation of facet formation and the coupled heat flow and segregation in Bridgman growth of oxide crystals," J. Cryst. Growth 233, 523-536 (2001). [CrossRef]
  16. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited