OSA's Digital Library

Optics Express

Optics Express

  • Vol. 16, Iss. 16 — Aug. 4, 2008
  • pp: 12362–12371

Optically controlled interparticle distance tuning and welding of single gold nanoparticle pairs by photochemical metal deposition

T. Härtling, Y. Alaverdyan, A. Hille, M. T. Wenzel, M. Käll, and L. M. Eng  »View Author Affiliations


Optics Express, Vol. 16, Issue 16, pp. 12362-12371 (2008)
http://dx.doi.org/10.1364/OE.16.012362


View Full Text Article

Enhanced HTML    Acrobat PDF (805 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the in-situ controlled tuning of the particle gap in single pairs of gold nanodisks by photochemical metal deposition. The optically induced growth of nanodisk dimers fabricated by electron beam lithography leads to a decrease of the interparticle gap width down to 0 nm. Due to the increasing particle size and stronger plasmonic coupling, a smooth redshift of the localized surface plasmon (LSP) resonances is observed in such particle pairs during the growth process. The interparticle gap width, and hence the LSP resonance, can be tuned to any desired spectral position. The experimental results we obtain with this nanoscale fabrication technique are well described by the so-called plasmon ruler equation. Consequently, both the changes in particle diameter as well as in gap width can be characterized in-situ via far-field read-out of the optical properties of the dimers.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.5130) Other areas of optics : Photochemistry
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: May 16, 2008
Revised Manuscript: July 10, 2008
Manuscript Accepted: July 11, 2008
Published: August 1, 2008

Citation
T. Härtling, Y. Alaverdyan, A. Hille, M. T. Wenzel, M. Käll, and L. M. Eng, "Optically controlled interparticle distance tuning and welding of single gold nanoparticle pairs by photochemical metal deposition," Opt. Express 16, 12362-12371 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-12362


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. Phys. 25, 377 (1908). [CrossRef]
  2. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935 (2003). [CrossRef]
  3. S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102 (1997). [CrossRef] [PubMed]
  4. L. Lu, G. Sun, S. Xi, H. Wang, and H. Zhang, "A colloidal templating method to hollow bimetallic nanostructures," Langmuir 19, 3074 (2003). [CrossRef]
  5. G. Festag, A. Steinbrück, A. Csaki, R. Möller, and W. Fritzsche, "Single particle studies of the autocatalytic metal deposition onto surface-bound gold nanoparticles reveal a linear growth," Nanotechnology 18, 015502 (2007). [CrossRef]
  6. J. P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, and B. Kabius, "Ordered deposition of inorganic clusters from micellar block copolymer films," Langmuir 16, 407 (2000). [CrossRef]
  7. M. Suzuki, W. Maekita, Y. Wada, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, "In-line aligned and bottom-up Ag nanorods for surface-enhanced Raman spectroscopy," Appl. Phys. Lett. 88, 203121 (2006). [CrossRef]
  8. H. Krone, "Krone�??s neuer Trocken-Process," Photogr. Corresp. 10, 224 (1873).
  9. M. Käll, H. Xu, and P. Johansson, "Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy," J. RamanSpec. 36, 510 (2005). [CrossRef]
  10. P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, "Two particle enhanced nano Raman microscopy and spectroscopy," Nano Lett. 7, 1736 (2007). [CrossRef] [PubMed]
  11. H. Wang, C. S. Levin, and N. J. Halas, "Nanosphere arrays with controlled sub-10nm-gaps as surface-enhanced Raman spectroscopy substrates," J. Am. Chem. Soc. 127, 14992 (2006). [CrossRef]
  12. F. Svedberg, Z. Li, H. Xu, and M. Käll, "Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation," Nano Lett. 6, 2639 (2006). [CrossRef] [PubMed]
  13. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Opt. Lett. 32, 1623 (2007). [CrossRef] [PubMed]
  14. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimers," Nano Lett. 5, 1569 (2005). [CrossRef] [PubMed]
  15. J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandt, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, "Close encounters between two nanoshells," Nano Lett. 8, 1212 (2008). [CrossRef] [PubMed]
  16. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999). [CrossRef]
  17. H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000). [CrossRef]
  18. R. Ruppin, "Surface modes of two spheres," Phys. Rev. B 26, 3440 (1982). [CrossRef]
  19. T. Jensen, L. Kelly, and A. Lazarides, G. C. Schatz, "Electrodynamics of noble metal nanoparticles and nanoparticle clusters," J. Clust. Sci. 10, 295 (1999). [CrossRef]
  20. J. P. Kottmann and O. J. F. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. 26, 1096 (2001). [CrossRef]
  21. H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826 (2002). [CrossRef]
  22. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003). [CrossRef]
  23. K. H. Su, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003). [CrossRef]
  24. J. J. Xiao, J. P. Huang, and K. W. Yu, "Optical response of strongly coupled metal nanoparticles in dimer arrays," Phys. Rev. B 71, 045404 (2005). [CrossRef]
  25. E. Hao, and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357 (2003). [CrossRef]
  26. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899 (2004). [CrossRef]
  27. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079 (2005). [CrossRef]
  28. P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, "Distance dependent tuning of two coupled metal nanoparticles," Nano Lett. 8, 1174 (2008). [CrossRef] [PubMed]
  29. U. Kreibig, and M. Vollmer, Optical Properties of Noble Metal Clusters, (Springer, 1995).
  30. T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, "Photochemical tuning of plasmon resonances in single gold nanoparticles," J. Phys. Chem C 112, 4920 (2008). [CrossRef]
  31. J. D. Jackson, Classical Electrodynamics (Wiley and Sons, 1998).
  32. P. K. Jain, W. Huang, and M. A. El-Sayed, "On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation," Nano Lett. 7, 3227 (2007). [CrossRef] [PubMed]
  33. Minimum gap width 5 nm. The data points at d / D = 1.6, 3, and 4 stem from unexposed dimers of 50 nm particle diameter and gap widths of 80, 150, and 200, respectively.
  34. C. Hafner, Post-modern Electromagnetics: Using intelligent MaXwell solvers, (Wiley and Sons, 1999).
  35. C. Hafner, MaX-1. A visual electromagnetics platform for PCs, (Wiley and Sons, 1999).
  36. P. B. Johnson, and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd," Phys. Rev. B 6, 4370 (1972). [CrossRef]
  37. T. Atay, J. H. Song, and A. V. Nurmikko, "Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627 (2004). [CrossRef]
  38. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garcia de Abajo, "Plasmons in nearly touching metallicnanoparticles: singular repsonse in the limit of touching dimers," Opt. Express 14, 9988 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited