OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 12715–12725

Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification

Tae Oh Yoon, Hyun Joo Shin, Sae Chae Jeoung, and Youn-Il Park  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 12715-12725 (2008)
http://dx.doi.org/10.1364/OE.16.012715


View Full Text Article

Acrobat PDF (3280 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The formation of hemispherical nanostructures and microscaled papilla by ultrafast laser irradiation was found to be a potential method to generate superhydrophbic surface of synthetic polymers. Irradiation of femtosecond laser creates roughened poly(dimethylsiloxane) (PDMS) surface in nano- and microscales, of which topography fairly well imitate a Lotus leaf in nature. The modified surface showed superhydrophobicity with a contact angle higher than 170° as well as sliding angle less than 3°. We further demonstrated that negative replica of the processed PDMS surface exhibit large contact angle hysteresis with a sliding angle of 90° while the positive replica maintains superhydrophobicity.

© 2008 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Materials

History
Original Manuscript: May 12, 2008
Revised Manuscript: June 22, 2008
Manuscript Accepted: August 3, 2008
Published: August 7, 2008

Virtual Issues
Vol. 3, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Tae Oh Yoon, Hyun Joo Shin, Sae Chae Jeoung, and Youn-Il Park, "Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification," Opt. Express 16, 12715-12725 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-12715


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, "Designing superoleophobic surfaces," Science 318, 1618-1622 (2007). [CrossRef]
  2. A. Ressine, G. Marko-Varga, and T. Laurell, "Porous silicon protein microarray technology and ultra-/superhydrophobic state for improved bioanalytical readout," Biotechnol. Annu. Rev. 13, 149-200 (2007).
  3. M.-F. Wang, N. Raghunathan, and B. Ziaie, "A nonlithographic top-down electrochemical approach for creating hierarchical (micro-nano) superhydrophobic silicon surfaces," Langmuir 23, 2300-2303 (2007). [CrossRef]
  4. J. Erlebacher, K. Sieradzki, and P. C. Searson, "Computer Simulations of Pore Growth in Silicon," J. Appl. Phys. 76, 182-187 (1994). [CrossRef]
  5. L. Feng, S. Li, Y. Li, H. Li, L. Zhang, and J. Zhai, "Super-Hydrophobic Surfaces: From Natural to Artificial," Adv. Mater. 14, 1857-1860 (2002). [CrossRef]
  6. M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, "Artificial Lotus leaf by nanocasting," Langmuir 21, 8978-8981 (2005). [CrossRef]
  7. A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, "Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate," Adv. Mater. 11, 1365-1368 (1999). [CrossRef]
  8. K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla and G. A. J. Amaratunga, "Superhydrophobic Carbon Nanotube Forests," Nano Lett. 3, 1701-1705 (2003). [CrossRef]
  9. A. Shastry, M. J. Case, K. F. Bohringer, "Directing Droplets using Microstructured Surfaces," Langmuir 22, 6161-6167 (2006). [CrossRef]
  10. M. T. Khorasani, H. Mirzadeh and P. G. Sammes, "Laser induced surface modification of polydimethylsiloxane as a super-hydrophobic material," Radiant Phys. Chem. 47, 881-888 (1996). [CrossRef]
  11. T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, "Superhydrophobic Surfaces Prepared by Microstructuring of Silicon using a Femtosecond Laser," Langmuir 22, 4917-4919 (2006). [CrossRef]
  12. C. Reinhardt, S. Passinger, V. Zorba, B. N. Chichkov, and C. Fotakis, "Replica molding of picosecond laser fabricated Si microstructures," Appl. Phys. A. 87, 673-677 (2007) [CrossRef]
  13. V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, "Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation," Nanotechnology 17, 3234-3238 (2006) [CrossRef]
  14. R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Ind. Eng. Chem. 28, 988-994 (1936). [CrossRef]
  15. A. B. D. Cassie and S. Baxter, "Wettability of porous surfaces," Trans. Faraday Soc. 40, 546-551 (1994).
  16. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995). [CrossRef]
  17. J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins," J. Am. Chem. Soc. 126, 7176-7177 (2004). [CrossRef]
  18. F. Mafune, J.-Y. Kohno, Y. Takeda, and T. Kondow, "Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control," J. Phys. Chem. B 106, 7575-7577 (2002). [CrossRef]
  19. J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864-16869 (2004). [CrossRef]
  20. T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383-385 (2000). [CrossRef]
  21. S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of Room-Temperature Photoluminescent Nanoparticles by Ultrafast Laser Processing of Single-Crystalline Ge," Jpn. J. Appl. Phys. 44, 5278-5281 (2005). [CrossRef]
  22. M. A. Seo, D. S. Kim, H. S. Kim, and S. C. Jeoung, "Polarization-induced size control and ablation dynamics of Ge nanostructures formed by a femtosecond laser," Opt. Express 14, 3694-3699 (2006). [CrossRef]
  23. M. A. Seo, D. S. Kim, H. S. Kim, D. S. Choi, and S. C. Jeoung, "Formation of photoluminescent germanium nanostructures by femtosecond laser processing on bulk germanium: role of ambient gases," Opt. Express 14, 4908-4914 (2006). [CrossRef]
  24. X. M. Zhao, Y. N. Xia, and G. M. Whitesides, "Soft lithographic methods for nano-fabrication," J. Mater. Chem. 7, 1069-1074 (1997) [CrossRef]
  25. W. Chen, W. A. T. Fadeev, M. C. Hsieh, D. Oner, J. Youngblood, T. J. McCarthy, "Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples," Langmuir 15, 3395-3399 (1999). [CrossRef]
  26. D. Oner and T. J. McCarthy, "Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability," Langmuir 16, 7777-7782 (2000). [CrossRef]
  27. K. -Y. Yeh, L.-J. Chen, and J. -Y. Chang, "Contact Angle Hysteresis on Regular Pillar-like Hydrophobic Surfaces," Langmuir 24, 245-251 (2008). [CrossRef]
  28. C. V. Shank, R. Yen, and C. Hirlimann, "Time-resolved reflectivity measurements of femtosecond-opticalpulse-induced phase transitions in silicon," Phys. Rev. Lett. 50, 454-457 (1983). [CrossRef]
  29. D. C. Sayle and S. C. Parker, "Encapsulated oxide nanoparticles: the influence of the microstructure on associated impurities within a material," J. Am. Chem. Soc. 125, 8581-8594 (2003). [CrossRef]
  30. L. Phillips, R. S. Sinkovits, E. S. Oran, and J. P. Boris, "The interaction of shocks and defects in Lennard-Jones crystal," J. Phys.: Condens. Matter,  5, 6357-6376 (1993). [CrossRef]
  31. P. Erhart, E. M. Bringa, M. Kumar, and K. Albe, "Atomistic mechanism of shock-induced void collapse in nano-porous metals," Phys. Rev. B.  72, 052104(1)-052104(4) (2005)
  32. J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, "Time- and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide," J. Appl. Phys.  103, 054910(1)-54910(6) (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited