OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 12819–12834

Rapid simulation of wide-angle scattering from mitochondria in single cells

Patrick M. Pilarski, Xuan-Tao Su, D. Moira Glerum, and Christopher J. Backhouse  »View Author Affiliations

Optics Express, Vol. 16, Issue 17, pp. 12819-12834 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1067 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It has been shown that the mitochondria are the dominant source of large-angle light scattering from human cells. In the limit of small mitochondria, we show that the large-angle (isotropic) light scattering of mitochondria may be analyzed and simulated with an adaptation of classical X-ray diffraction theory. In addition, we show that this approach may be extended to the case of anisotropic scatter. These results enable the rapid simulation and analysis of mitochondrial scattering patterns and allow the determination of some aspects of cell structure directly from experimental scattering patterns.

© 2008 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(100.2960) Image processing : Image analysis
(100.3190) Image processing : Inverse problems
(170.1530) Medical optics and biotechnology : Cell analysis
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(290.3200) Scattering : Inverse scattering

ToC Category:

Original Manuscript: March 11, 2008
Revised Manuscript: July 9, 2008
Manuscript Accepted: July 10, 2008
Published: August 8, 2008

Virtual Issues
Vol. 3, Iss. 10 Virtual Journal for Biomedical Optics

Patrick M. Pilarski, Xuan-Tao Su, D. Moira Glerum, and Christopher J. Backhouse, "Rapid simulation of wide-angle scattering from mitochondria in single cells," Opt. Express 16, 12819-12834 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. L. Gourley, "Biocavity laser for high-speed cell and tumour biology," J. Phys. D-Appl. Phys. 36, R228-R239 (2003). [CrossRef]
  2. V. P. Maltsev, "Scanning flow cytometry for individual particle analysis," Rev. Sci. Instrum. 71, 243-255 (2000). [CrossRef]
  3. K. A. Sem�??yanov, P. A. Tarasov, J. T. Soini, A. K. Petrov, and V. P. Maltsev, "Calibration-free method to determine the size and hemoglobin concentration of individual red blood cells from light scattering," Appl. Opt. 39, 5884- 5889 (2000). [CrossRef]
  4. Z. Ulanowski, Z. Wang, P. H. Kaye, and I. K. Ludlow, "Application of neural networks to the inverse scattering problem for spheres," Appl. Opt. 37, 4027-4033 (1998). [CrossRef]
  5. X.-T. Su, C. Capjack, W. Rozmus, and C. Backhouse, "2D light scattering patterns of mitochondria in single cells," Opt. Express 15, 10562-10575 (2007). [CrossRef] [PubMed]
  6. Q1. K. Singh, X. Su, C. Liu, C. Capjack, W. Rozmus, and C. J. Backhouse, "A Miniaturized Wide-Angle 2D Cytometer," Cytometry A 69A, 307-315 (2006). [CrossRef]
  7. P. L. Gourley and R. K. Naviaux, "Optical Phenotyping of Human Mitochondria in a Biocavity Laser," IEEE J. Quantum Electron. 11, 818-826 (2005). [CrossRef]
  8. D. C. Wallace, "Mitochondrial diseases in man and mouse," Science 283, 1482-1488 (1999). [CrossRef] [PubMed]
  9. D. C. Wallace, "Diseases of the mitochondrial DNA," Annu. Rev. Biochem. 61, 1175-1212 (1992). [CrossRef] [PubMed]
  10. M. Brandon, P. Baldi, and D. C. Wallace, "Mitochondrial mutations in cancer," Oncogene 25, 4647-4662 (2006). [CrossRef] [PubMed]
  11. R. Drezek, A. Dunn, and R. Richards-Kortum, "Light scattering from cells: finite-difference time-domain simulations and goniometric measurements," Appl. Opt. 38, 3651-3661 (1999). [CrossRef]
  12. R. Drezek, A. Dunn, and R. Richards-Kortum, "A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges," Opt. Express 6, 147-157 (2000). [CrossRef] [PubMed]
  13. C. Liu, C. E. Capjack, and W. Rozmus, "3-D simulation of light scattering from biological cells and cell differentiation," J. Biomed. Opt. 10, 014007 (12 pages) (2005). [CrossRef]
  14. N. Ghosh, P. Buddhiwant, A. Uppal, K. Majumder, H. S. Patel, and P. K. Gupta, "Simultaneous determination of size and refractive index of red blood cells by light scattering measurements," Appl. Phys. Lett. 88, 084101 (3 pages) (2006). [CrossRef]
  15. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Quantum Electron. 9, 243-256 (2003). [CrossRef]
  16. H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Quantum Electron. 9, 267-276 (2003). [CrossRef]
  17. A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Quantum Electron. 9, 277-287 (2003). [CrossRef]
  18. J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidativestress- induced mitochondrial swelling," Biophys. J. 88, 2929-2938 (2005). [CrossRef] [PubMed]
  19. J. D. Wilson,W. J. Cottrell, and T. H. Foster, "Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes," J. Biomed. Opt. 12, 014010 (10 pages) (2007). [CrossRef] [PubMed]
  20. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1998). [CrossRef]
  21. P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, "Ultrafast nanolaser flow device for detecting cancer in single cells," Biomed. Microdevices 7, 331-339 (2005). [CrossRef]
  22. J. S. Modica-Napolitano and K. Singh, "Mitochondria as targets for detection and treatment of cancer," Expert Rev. Mol. Med. 4, 1-19 (2004). [PubMed]
  23. L. J. Garcia-Rodriguez, "Appendix 1. Basic properties of mitochondria," Methods Cell Biology 80, 809-812 (2007). [CrossRef]
  24. I. E. Scheffler, Mitochondria (John Wiley & Sons, New York, 1999). [CrossRef]
  25. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998). [CrossRef]
  26. B. Shao, J. S. Jaffe, M. Chachisvilis, and S. C. Esener, "Angular resolved light scattering for discriminating among marine picoplankton: modeling and experimental measurements," Opt. Express 14, 12473-12484 (2006). [CrossRef] [PubMed]
  27. Q2. K. Singh, C. Liu, C. Capjack, W. Rozmus, and C. J. Backhouse, "Analysis of Cellular Structure by Light Scattering Measurements in a New Cytometer Design Based on a Liquid-Core Waveguide," IEE Proc.-Nanobiotechnol. 151, 10-16 (2004). [CrossRef]
  28. T. Proffen and R. B. Neder, "DISCUS: A program for diffuse scattering and defect-structure simulation," J. Appl. Crystallogr. 30, 171-175 (1997). [CrossRef]
  29. S. Hoppins, L. Lackner, and J. Nunnari, "The Machines that Divide and Fuse Mitochondria," Annu. Rev. Biochem. 76, 751-780 (2007). [CrossRef] [PubMed]
  30. A. K. Dunn, "Light Scattering Properties of Cells," Ph.D dissertation, University of Texas at Austin (1997).
  31. P. Pilarski and C. Backhouse, "A method for cytometric image parameterization," Opt. Express 14, 12720-12743 (2006). [CrossRef] [PubMed]
  32. E. Hecht, Optics, 4th ed. (Addison Wesley, San Francisco, 2002).
  33. N. Kasai and M. Kakudo, X-Ray Diffraction by Macromolecules (Springer, New York, 2005).
  34. P. Thibault, V. Elser, C. Jacobsen, D. Shapiro, and D. Sayre, "Reconstruction of a yeast cell from X-ray diffraction data," Acta Crystallogr. A 62, 248-261 (2006). [CrossRef] [PubMed]
  35. J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang, and L. A. Nagahara, "Atomic resolution imaging of a carbon nanotube from diffraction intensities," Science 300, 1419-1421 (2003). [CrossRef] [PubMed]
  36. D. Shapiro, P. Thibault, T. Beetz, V. Elser, M. Howells, C. Jacobsen, J. Kirz, E. Lima, H. Miao, A. M. Neiman, and D. Sayre, "Biological imaging by soft X-ray diffraction microscopy," Proc. Natl. Acad. Sci. U.S.A. 102, 15343-15346 (2005). [CrossRef] [PubMed]
  37. R. B. Neder and T. Proffen, "Teaching diffraction with the aid of computer simulations," J. Appl. Crystallogr. 29, 727-735 (1996). [CrossRef]
  38. T. Proffen and R. B. Neder, "DISCUS: A program for diffuse scattering and defect-structure simulation - update," J. Appl. Crystallogr. 32, 838-839 (1999). [CrossRef]
  39. R. Rizzuto, P. Pinton, W. Carrington, F. S. Fay, K. E. Fogarty, L. M. Lifshitz, R. A. Tuft, and T. Pozzan, "Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses," Science 280, 1763- 1766 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited