OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 12967–12972

Special optical fiber for temperature sensing based on cladding-mode resonance

Fufei Pang, Wenchao Xiang, Hairun Guo, Na Chen, Xianglong Zeng, Zhenyi Chen, and Tingyun Wang  »View Author Affiliations

Optics Express, Vol. 16, Issue 17, pp. 12967-12972 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A fiber-optic temperature sensor by using a multi-cladding special fiber is presented. It works on the basis of leaky mode resonance from fiber core to outer cladding. With the thin-thickness inner cladding, the cladding mode is strongly excited and the resonant spectrum is very sensitive to the refractive index variation of coating material. By coating the special fiber with temperature-sensitive silicone, the temperature response was investigated experimentally from -20°C to 80°C. The results show high temperature sensitivity (240pm/°C at 20°C) and good repeatability.

© 2008 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 23, 2008
Revised Manuscript: July 31, 2008
Manuscript Accepted: July 31, 2008
Published: August 11, 2008

Fufei Pang, Wenchao Xiang, Hairun Guo, Na Chen, Xianglong Zeng, Zhenyi Chen, and Tingyun Wang, "Special optical fiber for temperature sensing based on cladding-mode resonance," Opt. Express 16, 12967-12972 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Culshaw, "Fiber-optic sensors: applications and advances," Opt. Photonics News 16, 24-29(2005). [CrossRef]
  2. Y. -G. Han, X. Dong, J. H. Lee, and S. B. Lee, "Simultaneous measurement of bending and temperature based on a single sampled chirped fiber Bragg grating embedded on a flexible cantilever beam," Opt. Lett. 31, 2839-2841 (2006). [CrossRef] [PubMed]
  3. Y. -J. Rao, Z. -l. Ran, X. Liao, and H. -y. Deng, "Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain," Opt. Express 15, 14936-14941 (2007). [CrossRef] [PubMed]
  4. Y. -G. Han, S. Lee, C. -S. Kim, J. Kang, Y. Chung, and U. -C. Paek, "Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities," Opt. Express 11, 476-481 (2003). [CrossRef] [PubMed]
  5. Z. Huang, Y. Zhu, X. Chen, and A. Wang, "Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements," IEEE Photon. Technol. Lett. 18, 1879-1881(2006).
  6. L. Cheng, A. J. Steckl, and J. Scofield, "SiC thin-film Fabry-Perot interferometer for fiber-optic temperature sensor," IEEE Trans. Electron Devices 50, 2159-2164 (2003). [CrossRef]
  7. H. Bao, T. Wang, and Y. Shen, "High sensitive coupling evanescent wave temperature sensor," Proc. SPIE 5634, 558-562 (2005). [CrossRef]
  8. S. M. Chandani, and N. A. F. Jaeger, "Fiber-optic temperature sensor using evanescent fields in D fibers," IEEE Photon. Technol. Lett. 17, 2706-2708 (2005). [CrossRef]
  9. E. Li, X. Wang, and C. Zhang, "Fiber-optic temperature sensor based on interference of selective higher-order modes," Appl. Phys. Lett. 89, 091119-1-3 (2006). [CrossRef]
  10. J. Ju, Z. Wang, W. Jin, and M. S. Demokan, "Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor," IEEE Photon. Technol. Lett. 18, 2168-2170(2006). [CrossRef]
  11. D. S. Moon, B. H. Kim, A. Lin, G. Sun, Y. -G. Han, W. -T. Han, and Y. Chung, "The temperature sensitivity of Sagnac loop interferometer based on polarization maintaining side-hole fiber," Opt. Express 15, 7962-7967 (2007). [CrossRef] [PubMed]
  12. L. G. Cohen, D. Marcuse and W. L. Mammel, "Radiating leaky-mode losses in single-mode lightguides with depressed-index claddings," IEEE J. Quantum Electron. QE-18, 1467-1472(1982). [CrossRef]
  13. D. Marcuse, Light Transmission Optics, (Van Nostrand Reinhold, New York, 1972), Chap. 10.
  14. F. D. Nunes, C. Adriana, d. S. Melo, H. Filomeno, and D. S. Filho, "Theoretical study of coaxial fibers," Appl. Opt. 35, 388-399 (1996). [CrossRef] [PubMed]
  15. R. V. Schmidt and R. C. Alferness, "Directional coupler switches, modulators and filters using alternating ?β techniques," IEEE Trans. Circuits Syst. CAS-26, 1099-1108(1979). [CrossRef]
  16. P. L. Frangois and C. Vassallo, "Finite cladding effects in W fibers: a new interpretation of leaky modes," Appl. Opt. 221, 3109-3120(1983). [CrossRef]
  17. A.  Koike and N.  Sugimoto, "Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass," Proc. SPIE 6116, 61160Y1-61160Y8 (2006).
  18. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, "Mode transition in high refractive index coated long period gratings," Opt. Express 14, 19-34 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited