OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 13188–13202

Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media

A. Liebert, H. Wabnitz, N. Żołek, and R. Macdonald  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 13188-13202 (2008)
http://dx.doi.org/10.1364/OE.16.013188


View Full Text Article

Enhanced HTML    Acrobat PDF (417 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an efficient Monte Carlo algorithm for simulation of time-resolved fluorescence in a layered turbid medium. It is based on the propagation of excitation and fluorescence photon bundles and the assumption of equal reduced scattering coefficients at the excitation and emission wavelengths. In addition to distributions of times of arrival of fluorescence photons at the detector, 3-D spatial generation probabilities were calculated. The algorithm was validated by comparison with the analytical solution of the diffusion equation for time-resolved fluorescence from a homogeneous semi-infinite turbid medium. It was applied to a two-layered model mimicking intra- and extracerebral compartments of the adult human head.

© 2008 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 4, 2008
Revised Manuscript: July 31, 2008
Manuscript Accepted: July 31, 2008
Published: August 13, 2008

Virtual Issues
Vol. 3, Iss. 10 Virtual Journal for Biomedical Optics

Citation
A. Liebert, H. Wabnitz, N. Zolek, and R. Macdonald, "Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media," Opt. Express 16, 13188-13202 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13188


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum US, 1999).
  2. K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montan, S. Andersson-Engels, and S. Svanberg, "Clinical multi-colour fluorescence imaging of malignant tumours--initial experience," Acta Radiol. 39, 2-9 (1998). [PubMed]
  3. M. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hortnagl, H. Lochs, and H. Rinneberg, "Time gated fluorescence spectroscopy in Barrett's oesophagus," Gut 52, 28-33 (2003). [CrossRef]
  4. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002). [CrossRef] [PubMed]
  5. A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grotzinger, "Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands," Nat. Biotechnol. 19, 327-331 (2001). [CrossRef] [PubMed]
  6. R. Weissleder, "Scaling down imaging: Molecular mapping of cancer in mice," Nat. Rev. Cancer 2, 11-18 (2002). [CrossRef] [PubMed]
  7. R. Weersink, M. S. Patterson, K. Diamond, S. Silver, and N. Padgett, "Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence/reflectance ratio technique," Appl. Opt. 40, 6389-6395 (2001). [CrossRef]
  8. K. R. Diamond, T. J. Farrell, and M. S. Patterson, "Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence," Phys. Med. Biol. 48, 4135-4149 (2003). [CrossRef]
  9. D. E. Hyde, T. J. Farrell, M. S. Patterson, and B. C. Wilson, "A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations," Phys. Med. Biol. 46, 369-383 (2001). [CrossRef] [PubMed]
  10. D. Stasic, T. J. Farrell, and M. S. Patterson, "The use of spatially resolved fluorescence and reflectance to determine interface depth in layered fluorophore distributions," Phys. Med. Biol. 48, 3459-3474 (2003). [CrossRef] [PubMed]
  11. E. M. Sevick-Muraca, J. S. Reynolds, J. Lee, D. Hawrysz, A. B. Thompson, R. H. Mayer, R. Roy, and T. L. Troy, "Fluorescence lifetime imaging of tissue volumes using near- infrared frequency domain photon migration," Photochem. Photobiol. 69, 66S-66S (1999).
  12. J. Wu, J. Wang, L. Perelman, I. Itzkan, R. Dasari, and F. Ms, "Time-resolved multichannel imaging of fluorescent objects embedded in turbid media," Opt. Lett. 20, 489-491 (1995). [CrossRef] [PubMed]
  13. R. H. Mayer, J. S. Reynolds, and E. N. Sevick-Muraca, "Measurement of the fluorescence lifetime in scattering media lay frequency-domain photon migration," Appl. Opt. 38, 4930-4938 (1999). [CrossRef]
  14. D. Hattery, V. Chernomordik, M. Loew, I. Gannot, and A. Gandjbakhche, "Analytical solutions for time-resolved fluorescence lifetime imaging in a turbid medium such as tissue," J. Opt. Soc. Am. A 18, 1523-1530 (2001). [CrossRef]
  15. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. SevickMuraca, "Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media," Appl. Opt. 36, 2260-2272 (1997). [CrossRef] [PubMed]
  16. C. L. Hutchinson, T. L. Troy, and E. M. Sevick Muraca, "Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics," Appl. Opt. 35, 2325-2332 (1996). [CrossRef] [PubMed]
  17. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, "Imaging of spontaneous canine mammary tumors using fluorescent contrast agents," Photochem. Photobiol. 70, 87-94 (1999). [CrossRef] [PubMed]
  18. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, "Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans," Opt. Express 15, 6696-6716 (2007). [CrossRef] [PubMed]
  19. A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, "Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain," Neuroimage 31, 600-608 (2006). [CrossRef] [PubMed]
  20. A. J. Welch and R. Richards-Kortum, "Monte Carlo simulation of the propagation of fluorescent light" in Laser induced Interstitial Thermotherapy, G. Muller and A. Roggan, eds., (1995), p. 174-189.
  21. A. J. Welch, C. Gardner, R. Richard-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers. Surg. Med. 21, 166-178 (1997). [CrossRef] [PubMed]
  22. R. J. Crilly, W. F. Cheong, B. Wilson, and J. R. Spears, "Forward-adjoint fluorescence model: Monte Carlo integration and experimental validation," Appl. Opt. 36, 6513-6519 (1997). [CrossRef]
  23. J. Swartling, A. Pifferi, A. M. K. Enejder, and S. Andersson-Engels, "Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues," J. Opt. Soc. Am. A 20, 714-727 (2003). [CrossRef]
  24. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, "A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol. 38, 1859-1876 (1993). [CrossRef] [PubMed]
  25. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, "Determining changes in NIR absorption using a layered model of the human head," Phys. Med. Biol. 46, 879-896 (2001). [CrossRef] [PubMed]
  26. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998). [CrossRef]
  27. A. Pifferi, R. Berg, P. Taroni, and S. Andersson-Engels, "Fitting of time-resolved reflectance curves with a Monte Carlo model," in Advances in Optical Imaging and Photon Migration, R. R. Alfano and J. G. Fujimoto, eds. (1996), pp. 311-314.
  28. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, "Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons," Appl. Opt. 43, 3037-3047 (2004). [CrossRef] [PubMed]
  29. M. Patterson and B. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994). [CrossRef] [PubMed]
  30. A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, "Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance," Neuroimage 24, 426-435 (2005). [CrossRef] [PubMed]
  31. H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhahn, J. P. Dreier, H. Obrig, J. Steinbrink, and R. Macdonald, "A time-domain NIR brain imager applied in functional stimulation experiments," in Photon Migration and Diffuse-Light Imaging II, K. Licha and R. Cubeddu, eds., (2005), p. 58590H.
  32. M. Kohl-Bareis, H. Obrig, K. Steinbrink, K. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: Separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002). [CrossRef] [PubMed]
  33. T. S. Leung, I. Tachtsidis, M. Tisdall, M. Smith, D. T. Delpy, and C. E. Elwell, "Theoretical investigation of measuring cerebral blood flow in the adult human head using bolus Indocyanine Green injection and near-infrared spectroscopy," Appl. Opt. 46, 1604-1614 (2007). [CrossRef] [PubMed]
  34. Q. Liu and N. Ramanujam, "Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media," J. Opt. Soc. Am. A 24, 1011-1025 (2007). [CrossRef]
  35. J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, "Towards non-invasive molecular fluorescence imaging of the human brain," Neurodegenerative 5, 296-303 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited