OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 13233–13239

Pseudo-random single photon counting for time-resolved optical measurement

Qiang Zhang, Hock Wei Soon, Haiting Tian, Shakith Fernando, Yajun Ha, and Nan Guang Chen  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 13233-13239 (2008)
http://dx.doi.org/10.1364/OE.16.013233


View Full Text Article

Enhanced HTML    Acrobat PDF (91 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a new time-resolved optical measurement method which combines single photon counting and the spread spectrum time-resolved optical measurement method. A laser diode modulated with pseudo-random bit sequences replaces the short pulse laser used in conventional time-resolved optical systems, while a single photon detector records the pulse sequence in response to the modulated excitation. Periodic cross-correlation is used to retrieve the impulse response. Feasibility of our approach is validated experimentally. A rise time around 150 picoseconds has been achieved with our prototype. Besides high temporal resolution, the new method also affords other benefits such as high photon counting rate, fast data acquisition, portability, and low cost.

© 2008 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 19, 2008
Revised Manuscript: August 8, 2008
Manuscript Accepted: August 10, 2008
Published: August 13, 2008

Virtual Issues
Vol. 3, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Qiang Zhang, Hock Wei Soon, Haiting Tian, Shakith Fernando, Yajun Ha, and Nan Guang Chen, "Pseudo-random single photon counting for time-resolved optical measurement," Opt. Express 16, 13233-13239 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13233


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989). [CrossRef] [PubMed]
  2. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K.W. Berndt, and M. Johnson, "Fluorescence lifetime imaging," Anal. Biochem. 202, 316-330 (1992). [CrossRef] [PubMed]
  3. P. I. H. Bastiaens and A. Squire, "Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell," Trends Cell Biol. 9, 48-52 (1999). [CrossRef] [PubMed]
  4. F. Gao, H. J. Zhao, and Y. Yamada, "Improvement of Image Quality in Diffuse Optical Tomography by use of Full Time-Resolved Data," Appl. Opt. 41, 778-791 (2002). [CrossRef] [PubMed]
  5. M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, and D. T. Delpy, "Spectral dependence of temporal point spread functions in human tissues," Appl. Opt. 32, 418-425 (1993). [CrossRef] [PubMed]
  6. W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, "Fluorescence lifetime imaging by time-correlated single-photon counting," Microsc. Res. Tech. 63, 58-66 (2004). [CrossRef]
  7. D. V. O'Connor and D. Phillips, "Basic Principle of the Single Photon Counting Lifetime Measurement," in Time-correlated single photon counting, (Academic, 1984), pp. 36-54.
  8. Becker & Hickl GmbH, "The bh TCSPC handbook,"http://www.becker-hickl.com/literature.htm.
  9. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, "Development of a Time-Domain Optical Mammograph and First in vivo Applications," Appl. Opt. 38, 2927-2943 (1999). [CrossRef]
  10. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Compact Tissue Oximeter Based on Dual-Wavelength Multichannel Time-Resolved Reflectance," Appl. Opt. 38, 3670-3680 (1999). [CrossRef]
  11. M. Prummer, C. G. Hübner, B. Sick, B. Hecht, A. Renn, and U. P. Wild, "Single-Molecule Identification by Spectrally and Time-Resolved Fluorescence Detection," Anal. Chem. 72, 443 - 447 (2000). [CrossRef] [PubMed]
  12. P. Schwille, S. Kummer, A. A. Heikal, W. E. Moerner, and W. W. Webb, "Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins," PNAS,  97, 151-156 (2000) [CrossRef] [PubMed]
  13. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, and M. Takada, "Multichannel time-resolved optical tomographic imaging system," Rev. Sci. Instrum. 70, 3595-3602 (1999). [CrossRef]
  14. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000). [CrossRef]
  15. N. G. Chen and Q. Zhu, "Time-resolved diffusive optical tomography using pseudo-random sequences," Opt. Express. 11, 3445-3454 (2003). [CrossRef] [PubMed]
  16. N. G. Chen and Q. Zhu, "Time-resolved optical measurements with spread spectrum excitations," Opt. Lett. 27, 1806-1808 (2002). [CrossRef]
  17. N. G. Chen and Q. Zhu, "Spread spectrum time-resolved photon migration imaging system: the principle and simulation results," Proc. SPIE 4955, 474-479 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited