OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 13267–13275

Optical frequency combs generated by four-wave mixing in optical fibers for astrophysical spectrometer calibration and metrology

Flavio C. Cruz  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 13267-13275 (2008)
http://dx.doi.org/10.1364/OE.16.013267


View Full Text Article

Acrobat PDF (121 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical frequency combs generated by multiple four-wave mixing in short and highly nonlinear optical fibers are proposed for use as high precision frequency markers, calibration of astrophysical spectrometers, broadband spectroscopy and metrology. Implementations can involve two optical frequency standards as input lasers, or one standard and a second laser phase-locked to it using a stable microwave reference oscillator. Energy and momentum conservation required by the parametric generation assures phase coherence among comb frequencies, while fibers with short lengths can avoid linewidth broadening and stimulated Brillouin scattering. In contrast to combs from mode-locked lasers or microcavities, the absence of a resonator allows large tuning of the frequency spacing from tens of gigahertz to beyond teraHertz.

© 2008 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 20, 2008
Revised Manuscript: August 2, 2008
Manuscript Accepted: August 5, 2008
Published: August 13, 2008

Citation
Flavio C. Cruz, "Optical frequency combs generated by four-wave mixing in optical fibers for astrophysical spectrometer calibration and metrology," Opt. Express 16, 13267-13275 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13267


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, "Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser," Phys. Rev. Lett. 82, 3568-3571 (1999). [CrossRef]
  2. Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002). [CrossRef]
  3. W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, "Single-Atom Optical Clock with High Accuracy," Phys. Rev. Lett. 97, 020801 (2006). [CrossRef]
  4. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, "Sr Lattice Clock at 1 x 10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock," Science 319, 1805-1808 (2008). [CrossRef]
  5. S. N. Lea, "Limits to time variation of fundamental constants from comparisons of atomic frequency standards," Rep. Prog. Phys. 70, 1473-1523 (2007). [CrossRef]
  6. A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, "Attosecond control of electronic processes by intense light fields," Nature 421, 611-615 (2003). [CrossRef]
  7. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection," Science 311, 1595 (2006). [CrossRef]
  8. S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007). [CrossRef]
  9. A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, "United Time-Frequency Spectroscopy for Dynamics and Global Structure," Science 306, 2063-2068 (2004). [CrossRef]
  10. E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, "Attosecond Control and Measurement: Lightwave Electronics," Science 317, 769-775 (2007). [CrossRef]
  11. J. C. Knight, "Photonic Crystal fibers," Nature 424, 847-851 (2003). [CrossRef]
  12. H. R. Telle, G. Steinmayer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999). [CrossRef]
  13. T. M. Ramond, S. A. Diddams, L. Hollberg, and A. Bartels, "Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecond oscillator," Opt. Lett. 27, 1842-1844 (2002). [CrossRef]
  14. P. Del�??Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, "Optical frequency comb generation from a monolithic microresonator," Nature 450, 1214-1217 (2007) [CrossRef]
  15. P. Del�??Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, "Full stabilization of a mircoresonator frequency comb," Phys. Rev. Lett. 101, 053903 (2008). [CrossRef]
  16. M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini,C. Araujo-Hauck, H. Dekker, S. D�??Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, "High-precision wavelength calibration with laser frequency combs," Mon. Not. R. Astron. Soc. 380, 839-847 (2007). [CrossRef]
  17. C.-Hao Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, "A laser frequency comb that enables radial velocity measurements with a precision of 1 cms-1," Nature 452, 610-612 (2008). [CrossRef]
  18. D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, "Astronomical spectrograph calibration with broad-spectrum frequency combs," Eur. Phys. J. D 48, 57-66 (2008). [CrossRef]
  19. G. P. Agrawal, Nonlinear Optical Fiber Optics (Academic Press, New York, 2001).
  20. H. G. Weber, R. Ludwig, S. Ferber, C. S. Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, "Ultrahigh-Speed OTDM-Transmission Technology," J. Lightwave Technol. 24, 4616-4627 (2006). [CrossRef]
  21. S. Pitois, J. Fatome, and G. Millot, "Generation of 160-GHz transform limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal, " Opt. Lett. 27, 1729-1731 (2008). [CrossRef]
  22. S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G . Millot, "Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers," Opt. Commun. 260, 301-306 (2006). [CrossRef]
  23. J. Fatome, S. Pitois, and G. Millot, "320/640 GHz high-quality pulse sources based on multiple four-wave mixing in highly nonlinear optical fibre," Electron. Lett. 41 (2005). [CrossRef]
  24. J. Fatome, S. Pitois, and G. Millot, "20-GHz-to-1 GHz repetition rate pulse sources based on multiple four-wave mixing in optical fibers," IEEE J. Quantum Electron. 42, 1038-1046 (2006). [CrossRef]
  25. A. Cerqueira S. Jr, J. M. Chavez Boggio, A. A. Rieznik, H. E. Hernandez-Figueroa, H. L. Fragnito, and J. C. Knight, "Highly efficient generation of broadband cascaded four-wave mixing products," Opt. Express 16, 2816-2828 (2008). [CrossRef]
  26. L. S. Ma, P. A. Jungner, J. Ye, and J. L. Hall, �??�??Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,�??�??Opt. Lett. 19, 1777-1779 (1994).
  27. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, �??�??Visible lasers with subhertz linewidths,�??�??Phys. Rev. Lett. 82, 3799-3802 (1999). [CrossRef]
  28. J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, "Delivery of high-stability optical and microwave frequency standards over an optical fiber network," J. Opt. Soc. Am. B 20, 1459-1467 (2003). [CrossRef]
  29. N. R. Newbury, P. A. Williams, and W. C. Swann, "Coherent transfer of an optical carrier over 251 km," Opt.Lett. 32, 3056-3058 (2007) [CrossRef]
  30. K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, "cw three-wave mixing in single-mode fibers," J. Appl. Phys. 49, 5098-5106 (1978). [CrossRef]
  31. J. Zhou, R. Hiu, and N. Caponio, "Spectral linewidth and frequency chirp four-wave mixing components in optical fibers," IEEE Photon. Technol. Lett. 6, 434-436 (1994). [CrossRef]
  32. M. Rodwell, J. E. Bowers, R. Pullela, K. Gilboney, J. Pusl, and D. Nguyen, �??�??Electric and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz,�??�?? in LEOS Summer Topical Meetings, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21-22.
  33. P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, "Spectroscopic applications and frequency locking of THz photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 71, 1601-1603 (1997). [CrossRef]
  34. X.-C. Zhang, Y. Jin, and X. F. Ma, "Coherent measurement of THz optical rectification from electro-optic crystals," Appl. Phys. Lett. 61, 2764- 2766 (1992). [CrossRef]
  35. Q. Quraishi, M. Griebel, T. Kleine-Ostmann, and R. Bratschitsch, "Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime," Opt. Lett. 30, 3231-3233 (2005). [CrossRef]
  36. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, "High-intensity terahertz radiation from a microstructured large-area photoconductor," Appl. Phys. Lett. 86, 121114 (2005). [CrossRef]
  37. D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, and C. A. Massa, "A review of optically pumped far-infrared laser lines from methanol isotopes," Int. J. Infr. Mill. Waves 15, 1-44 (1994). [CrossRef]
  38. C. Champenois, G. Hagel, M. Houssin, M. Knoop, C. Zumsteg, and F. Vedel, "Terahertz Frequency Standard Based on Three-Photon Coherent Population Trapping," Phys. Rev. Lett. 99, 013001 (2007). [CrossRef]
  39. D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, "Laser-Cooled Mercury Ion Frequency Standard," Phys. Rev. Lett. 80, 2089-2092 (1998). [CrossRef]
  40. S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg-199(+) ion," Science 293, 825-828 (2001). [CrossRef]
  41. B. Xu, Y. Coello, V. V. Lozovoy, D. A. Harris, and M. Dantus, "Pulse shaping of octave spanning femtosecond laser pulses," Opt. Express 14, 10939-10944 (2006). [CrossRef]
  42. M. C. Stowe, F. C. Cruz, A. Marian, and J. Ye, "Coherent population transfer dynamics controlled by pulse accumulation and spectral phase manipulation," Phys. Rev. Lett. 96, 153001 (2006). [CrossRef]
  43. L. E. E. de Araujo, "Selective and efficient excitation of diatomic molecules by an ultrashort pulse train," Phys. Rev. A 77, 033419 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited