OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 13323–13329

Simulations of the nonlinear Helmholtz equation: arrest of beam collapse, nonparaxial solitons and counter-propagating beams

G. Baruch, G. Fibich, and Semyon Tsynkov  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 13323-13329 (2008)
http://dx.doi.org/10.1364/OE.16.013323


View Full Text Article

Enhanced HTML    Acrobat PDF (272 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We solve the (2+1)D nonlinear Helmholtz equation (NLH) for input beams that collapse in the simpler NLS model. Thereby, we provide the first ever numerical evidence that nonparaxiality and backscattering can arrest the collapse. We also solve the (1+1)D NLH and show that solitons with radius of only half the wavelength can propagate over forty diffraction lengths with no distortions. In both cases we calculate the backscattered field, which has not been done previously. Finally, we compute the dynamics of counter-propagating solitons using the NLH model, which is more comprehensive than the previously used coupled NLS model.

© 2008 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.5940) Nonlinear optics : Self-action effects
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 15, 2008
Revised Manuscript: June 23, 2008
Manuscript Accepted: July 25, 2008
Published: August 14, 2008

Citation
G. Baruch, G. Fibich, and Semyon Tsynkov, "Simulations of the nonlinear Helmholtz equation: arrest of beam collapse, nonparaxial solitons and counter-propagating beams," Opt. Express 16, 13323-13329 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13323


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. L. Kelley, "Self-Focusing of Optical Beams," Phys. Rev. Lett. 15, 1005 (1965). [CrossRef]
  2. G. A. Askar�??yan, "Self-Focusing Effect," Sov. Phys. JETP 15, 1088 (1962).
  3. Y. Shen, "Self-focusing: Experimental," Prog. Quantum Electron. 4, 1 (1975). [CrossRef]
  4. A. Barthelemy, S. Maneuf, and C. Froehly, "Propagation soliton et auto-confinement de faisceaux laser par non linearit optique de kerr," Opt. Commun. 55, 201 (1985). [CrossRef]
  5. O. Cohen et al., "Collisions between Optical Spatial Solitons Propagating in Opposite Directions," Phys. Rev. Lett. 89, 133,901 (2002).
  6. G. Fibich and B. Ilan, "Vectorial and random effects in self-focusing and in multiple filamentation," Physica D 157, 112 (2001). [CrossRef]
  7. S. N. Vlasov, "Structure of the field of wave beams with circular polarization near a nonlinear focus in a cubic medium journal," Sov. J. Quantum Electron. 17, 1191 (1987). [CrossRef]
  8. M. Feit and J. Fleck, "Beam nonparaxiality, filament formation and beam breakup in the self-focusing of optical beams," J. Opt. Soc. Am. B 5, 633 (1988). [CrossRef]
  9. G. Fibich, "Small beam nonparaxiality arrests self-focussing of optical beams," Phys. Rev. Lett. 76, 4356 (1996). [CrossRef] [PubMed]
  10. G. Fibich and G. C. Papanicolaou, "Self-focusing in the perturbed and unperturbed nonlinear Schrodinger equation in critical dimension," SIAM J. Appl. Math. 60, 183 (1999). [CrossRef]
  11. G. Fibich and S. V. Tsynkov, "High-order two-way artificial boundary conditions for nonlinear wave propagation with backscattering," J. Comp. Phys. 171, 632 (2001). [CrossRef]
  12. G. Fibich and S. V. Tsynkov, "Numerical solution of the nonlinear Helmholtz equation using nonorthogonal expansions," J. Comp. Phys. 210, 183 (2005). [CrossRef]
  13. G. Fibich, B. Ilan, and S. V. Tsynkov, "Backscattering and nonparaxiality arrest collapse of damped nonlinear waves," SIAM J. Appl. Math. 63, 1718 (2003). [CrossRef]
  14. M. Sever, "An existence theorem for some semilinear elliptic systems," J. Differ. Equations 226, 572-593 (2006). [CrossRef]
  15. G. Baruch, G. Fibich, and S. V. Tsynkov, "Self-focusing in the perturbed and unperturbed nonlinear Schrodinger equation in critical dimension," J. Comput. Phys. 227, 820 (2007). [CrossRef]
  16. W. Chen and D. L. Mills, "Optical response of a nonlinear dielectric film," Phys. Rev. B 35, 524 (1987). [CrossRef]
  17. P. Chamorro-Posada, G. McDonald, and G. New, "Non-paraxial solitons," J. Mod. Opt. 45, 1111 (1998). [CrossRef]
  18. P Chamorro-Posada, G. S. McDonald, and G. H. C. New, "Non-paraxial beam propagation methods," Opt. Commun. 192, 1-12 (2001). [CrossRef]
  19. J. M. Christian, G. S. McDonald, and P. Chamorro-Posada, "Helmholtz bright and boundary solitons," J. Phys. A: Math. Theor. 40, 1545 (2007). [CrossRef]
  20. J. M. Christian, G. S. McDonald, R. Potton, and P. Chamorro-Posada, "Helmholtz solitons in power-law optical materials," Phys. Rev. A 76, 033,834 (2007).
  21. S. Chi and Q. Gou, "Vector theory of self-focusing of an optical beam in Kerr media," Opt. Lett. 20, 1598 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited