OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 13372–13380

Pointing and tracking errors due to localized deformation in inter-satellite laser communication links

Liying Tan, Yuqiang Yang, Jing Ma, and Jianjie Yu  »View Author Affiliations

Optics Express, Vol. 16, Issue 17, pp. 13372-13380 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1409 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Instead of Zernike polynomials, ellipse Gaussian model is proposed to represent localized wave-front deformation in researching pointing and tracking errors in inter-satellite laser communication links, which can simplify the calculation. It is shown that both pointing and tracking errors depend on the center deepness h, the radiuses a and b, and the distance d of the Gaussian distortion and change regularly as they increase. The maximum peak values of pointing and tracking errors always appear around h=0.2λ. The influence of localized deformation is up to 0.7µrad for pointing error, and 0.5µrad for tracking error. To reduce the impact of localized deformation on pointing and tracking errors, the machining precision of optical devices, which should be more greater than 0.2λ, is proposed. The principle of choosing the optical devices with localized deformation is presented, and the method that adjusts the pointing direction to compensate pointing and tracking errors is given. We hope the results can be used in the design of inter-satellite lasercom systems.

© 2008 Optical Society of America

OCIS Codes
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 30, 2008
Revised Manuscript: August 1, 2008
Manuscript Accepted: August 1, 2008
Published: August 15, 2008

Liying Tan, Yuqiang Yang, Jing Ma, and Jianjie Yu, "Pointing and tracking errors due to localized deformation in inter-satellite laser communication links," Opt. Express 16, 13372-13380 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Cosson, P. Doubrere, and E. Perez, "Simulation model and on-ground performances validation of the PAT system for SILEX program, in Free-Space Laser Communication Technologies III, D. L. Begley and B. D. Seery, eds.," Proc. SPIE 1417, 262-276 (1991). [CrossRef]
  2. B. Laurent and G. Planche, "SILEX overview after flight terminals campaign, in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed.," Proc. SPIE 2990, 10-22 (1997). [CrossRef]
  3. A. Mauroschat, "Reliability analysis of a multiple-laser-diode beacon for inter-satellite links, in Free-Space Laser Communication Technologies III, D. L. Begley and B. D. Seery, eds.," Proc. SPIE 1417, 513-524 (1991). [CrossRef]
  4. M. Renard, P. Dobie, J. Gollier, T. Heinrichs, P. Woszczyk, and A. Sobeczko, "Optical telecommunication performance of the qualification model SILEX beacon, in Free-Space Laser Communication Technologies VII, G. S. Mecherle, ed.," Proc. SPIE 2381, 289-300 (1995). [CrossRef]
  5. K. Nakagawa and A. Yamamoto, "Engineering model test of LUCE (laser utilizing communications equipment), in Free-Space Laser Communication Technologies VIII, G. S. Mecherle, ed.," Proc. SPIE 2699, 114-120 (1996). [CrossRef]
  6. Z. Liu, H. Zhao, J. Liu, J. Lin, M. A. Ahmad, and S. Liu, "Generation of hollow Gaussian beams by spatial filtering," Opt. Lett. 32, 2076-2078 (2007). [CrossRef] [PubMed]
  7. Rodrigo J. Noriega-Manez and Julio C. Gutirrez-Vega, "Rytov theory for Helmholtz-Gauss beams in turbulent atmosphere," Opt. Express 15, 16328-16341 (2007). [CrossRef] [PubMed]
  8. Brian R. Strickland, Michael J. Lavan, Eric Woodbridge, and Victor Chan, "Effects of fog on the bit-error rate of a free-space laser communication system," Appl. Opt. 38, 424-431 (1999). [CrossRef]
  9. Shlomi Arnon, "Power versus stabilization for laser satellite communication," Appl. Opt. 38, 3229-3233 (1999). [CrossRef]
  10. M. Toyoshima, N. Takahashi, T. Jono, T. Yamawaki, K. Nakagawa, and A. Yamamoto, "Mutual alignment errors due to the variation of wave-front aberrations in a free-space laser communication link," Opt. Express 9, 592-602 (2001). [CrossRef] [PubMed]
  11. J. F. Sun, L. R. Liu, M. J. Yun, and L. Y. Wan, "Mutual alignment errors due to wave-front aberrations in intersatellite laser communications," Appl. Opt. 44, 4953-4958 (2005). [CrossRef] [PubMed]
  12. J. Y. Wang and D. E. Silva, "Wave-front interpretation with Zernike polynomials," Appl. Opt. 19, 1510-1518 (1980). [CrossRef] [PubMed]
  13. W. H. Swantner and W. H. Lowrey, "Zernike-Tatian polynomials for interferogram reduction," Appl. Opt. 19, 161-163 (1980). [CrossRef] [PubMed]
  14. V. N. Mahajan, "Zernike annular polynomials for imaging systems with annular pupils," J. Opt. Soc. Am. 71, 75-85 (1981). [CrossRef]
  15. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, (Bellingham, Washington, SPIE Press, 1998).
  16. J. W. Goodman, Introduction to Fourier Optics, Second Edition, (New York, McGraw-Hill, 1996).
  17. M. Katzman, Ed., Laser Satellite Communications, (Englewood Cliffs, N.J., Prentice-Hall, 1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited