OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 13439–13449

High brightness, tunable biphoton source at 976 nm for quantum spectroscopy

Andreas Jechow, Axel Heuer, and Ralf Menzel  »View Author Affiliations

Optics Express, Vol. 16, Issue 17, pp. 13439-13449 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact all solid state continuous-wave biphoton source, tunable around 488 nm, for quantum spectroscopic applications based on a frequency doubled diode laser system is presented. Copolarized photon pairs in the fundamental transversal mode could be generated at 976 nm by spontaneous parametric down conversion inside a type-0 quasi phase matched periodically poled lithium niobate waveguide crystal with an efficiency of 8·10-6. A high flux rate greater than 107 photon pairs per second has been achieved at pump powers in the µW range resulting in more than 7·109 photon pairs/s·mW. Further a detailed investigation of the spectral behavior and the flux rate as a function of the detuning from the degenerated case is presented.

© 2008 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: June 16, 2008
Revised Manuscript: July 30, 2008
Manuscript Accepted: August 12, 2008
Published: August 15, 2008

Andreas Jechow, Axel Heuer, and Ralf Menzel, "High brightness, tunable biphoton source at 976 nm for quantum spectroscopy," Opt. Express 16, 13439-13449 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K.  Ekert, "Quantum cryptography based on Bells theorem," Phys. Rev. Lett.  67, 661-663 (1991). [CrossRef] [PubMed]
  2. N.  Gisin, G.  Ribordy, W.  Tittel, and H.  Zbinden, "Quantum cryptography," Rev. Mod. Phys.  74, 145-195 (2002). [CrossRef]
  3. T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, "Quantum computation with optical coherent states," Phys. Rev. A 68, 042319 (2003). [CrossRef]
  4. D.  Bouwmeester, J. W.  Pan, K.  Mattle, M.  Eibl, H.  Weinfurter, and A.  Zeilinger, "Experimental quantum teleportation," Nature (London)  390, 575-579 (1997). [CrossRef]
  5. A. Migdall, "Correlated-photon metrology without absolute standards," Phys. Today 52, 41-46 (1999). [CrossRef]
  6. A. Yabushita and T. Kobayashi, "Spectroscopy by frequency entangled photon pairs," Phys. Rev. A 69, 013806-1-013806-4 (2004). [CrossRef]
  7. A. A. Kalachev, D. A. Kalashnikov, A. A. Kalinkin, T. G. Mitrofanova, A. V. Shkalikov, and V. V. Samartsev, "Biphoton spectroscopy of YAG:Er3+ crystal," Laser Phys. Lett. 4, 722-725 (2007). [CrossRef]
  8. P. Trojek, C. Schmid, M. Bourennane, H. Weinfurter, and C. Kurtsiefer, "Compact source of polarization-entangled photon pairs," Opt. Express 12, 276-281 (2004). [CrossRef] [PubMed]
  9. J. Volz, Ch. Kurtsiefer, and H. Weinfurter, "Compact all-solid-state source of polarization-entangled photon pairs," Appl. Phys. Lett. 79, 869-871 (2001). [CrossRef]
  10. D. S. Hum and M. M. Fejer, "Quasi-phasematching," C. R. Physique 8, 180-198 (2007). [CrossRef]
  11. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, "Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate," Opt. Lett. 27, 179-181 (2002). [CrossRef]
  12. C. E.  Kuklewicz, M.  Fiorentino, G.  Messin, F. N. C.  Wong, and J. H.  Shapiro, "High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter," Phys. Rev. A  69, 013807 (2004). [CrossRef]
  13. B. S. Shi, C. Zhai, G. C. Guo, Y. K. Jiang, and A. Tomita, "Efficient generation of a photon pair in a bulk periodically poled potassium titanyl phosphate," Opt. Commun. 278, 363-367 (2007). [CrossRef]
  14. M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, "Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals," Opt. Express 15, 7479-7488 (2007). [CrossRef] [PubMed]
  15. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, "A wavelength-tunable fiber-coupled source of narrowband entangled photons," Opt. Express 15, 15377-15386 (2007). [CrossRef] [PubMed]
  16. S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Eur. Phys. J. D 18, 155-160 (2002). [CrossRef]
  17. H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, "Generation of pulsed polarization-entangled photon pairs in a 1.55-µm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit," Opt. Lett. 30, 293-295 (2005). [CrossRef] [PubMed]
  18. T. Honjo, H. Takesue, and K. Inoue, "Generation of energy-time entangled photon pairs in 1.5-μm band with periodically poled lithium niobate waveguide," Opt. Express 15, 1679-1683 (2007). [CrossRef] [PubMed]
  19. Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, "Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock," Opt. Express 15, 10288-10293 (2007). [CrossRef] [PubMed]
  20. G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, "Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide," Opt. Express 15, 12769-12776 (2007). [CrossRef] [PubMed]
  21. K. Yoshino, T. Aoki, and A. Furusawa, "Generation of continuous-wave broadband entangled beams using periodically-poled lithium niobate waveguides," Appl. Phys. Lett. 90, 041111 (2007). [CrossRef]
  22. Q1. D.I. Lee and T. GoodsonIII, "Entangled Photon Absorption in an Organic Porphyrin Dendrimer," J. Phys. Chem. B,  110, 25582-25585 (2006). [CrossRef] [PubMed]
  23. T. B. Pittman, "Development of a Parametric Down-Conversion Source for Two-Photon Absoption Experiments," Proc. SPIE 6710, 67100B (2007). [CrossRef]
  24. J. Javanainen and P. L. Gould, "Linear intensity dependence of a two-photon transition rate," Phys. Rev. A 41, 5088-5091 (1990). [CrossRef] [PubMed]
  25. H.-B. Fei, B. M. Jost, S. Popescu, B. E. A. Saleh, and M. C. Teich, "Entanglement-Induced Two-Photon Transparency," Phys. Rev. Lett. 78, 1679-1682 (1997). [CrossRef]
  26. M. C. Teich and B. E. A. Saleh, "Mikroskopie s kvantove provázanými fotony (Microscopy with Quantum-Entangled Photons)," Ceskloslovenský casopis pro fyziku 47, 3-8 (1997), (english translation) http://people.bu.edu/teich/pdfs/Cesk-English-47-3-1997.pdf.
  27. B. E. A. Saleh, B. M. Jost, H.-B. Fei, and M. C. Teich, "Entangled-photon virtual-state spectroscopy," Phys. Rev. Lett. 80, 3483-3486 (1998). [CrossRef]
  28. V. Raab and R. Menzel, "External resonator design for high-power laser diodes that yields 400mW of TEM00 power," Opt. Lett. 27, 167-169 (2002). [CrossRef]
  29. A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, "1 W tunable near di�?raction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz," Opt. Commun. 277, 161-165 (2007). [CrossRef]
  30. A. Jechow, D. Skoczowsky, and R. Menzel, "100 mW high efficient single pass SHG at 488 nm of a single broad area laser diode with external cavity using a PPLN waveguide crystal," Opt. Express 15, 6976-6981 (2007). [CrossRef] [PubMed]
  31. A. Jechow and R. Menzel, "Efficient blue light generation by frequency doubling of a broad-area diode laser in a compact external cavity," Appl. Phys. B 89, 507-511 (2007). [CrossRef]
  32. International Organization for Standardization, "Lasers and laser-related equipment - Test methods for laser beam parameters - Beam widths, divergence angle and beam propagation factor," ISO 11146, (Geneva, 2004).
  33. W. Akemann, C. Dinesh Raj, and T. Knöpfel, "Functional Characterization of Permuted Enhanced Green Fluorescent Proteins Comprising Varying Linker Peptides," Photochem. Photobiol. 74, 356-363 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited